COGNOME:

NOME:

MATRICOLA:

$\mathbf{I}\mathbf{l}$	presente scritto	è	relativo	a	5	cfu.	Indicare	se si	dovranno	verbalizzare:
------------------------	------------------	---	----------	---	---	------	----------	-------	----------	---------------

- □ 5 cfu di Automazione Manifatturiera
- ☐ 6 cfu di Automazione Manifatturiera
- □ 10 cfu di Robotica e Automazione
- □ 12 cfu di Automazione e Robotica con Laboratorio

N.B. Il presente foglio va consegnato unitamente al compito

- 1. Si consideri una macchina soggetta a guasti con tempi di funzionamento e di guasto a distribuzione esponenziale con parametri $q_d=1$ e $q_u=50$ rispettivamente. Siano d=47 il tasso della domanda e $\mu=48$ quello massimo di produzione. Sia $g(x)=c_px^++85x^-$ la funzione di costo da minimizzare.
 - (a) Mostrare che il sistema è stabilizzabile. [2pt]
 - (b) Calcolare il valore della scorta ottima se $c_p = 1$. [7pt]
 - (c) Calcolare per quali valori di c_p la scorta ottima risulta maggiore di 5. [3pt]
 - (d) Sempre con $c_p = 1$, e supponendo di controllare il sistema mediante la politica ottima, determinare il valore medio a regime \bar{x} del buffer. Dire, motivando la risposta e possibilmente senza calcolare esplicitamente il costo ottimo J^* , quale risulta minore tra $g(\bar{x})$ e J^* . [2+2pt]
- 2. Un sistema di produzione produce 4 tipi di parti (A,B,C,D) utilizzando 5 diverse stazioni di lavoro (1,2,3,4,5), secondo la tabella seguente. Il tempo medio di trasporto da una stazione all'altra è di 0.5 minuti mentre tutte le lavorazioni richiedono lo stesso tempo pari a 10 minuti.

	Parte	Frazione p_j	Ciclo produttivo
ì	A	0.3	$2 \rightarrow 1$
	В	0.4	$3 \rightarrow 5$
1	C	0.2	$4 \rightarrow 2 \rightarrow 1$
	D	0.1	$3 \rightarrow 5 \rightarrow 3$

- a) Utilizzando l'algoritmo di Rank Order Clustering, individuare le due famiglie (e le macchine contenute nelle rispettive celle) in cui possono essere raggruppate le parti. [8pt]
- b) Calcolare mediante il modello Bottleneck il numero minimo di server da utilizzare nelle diverse stazioni (inclusa quella di trasporto) se si vuole che il sistema produca a un tasso di 73 pezzi/ora. [5pt]
- 3. Dire cosa si intende per tempo di scansione di un PLC indicando anche approssimativamente il valore di tale tempo. [1+1pt]

Es. 1 a) Per la stabilitabilité occorr mostron
$$\mu_{gate}$$
, d o equivelentement, che $\Delta = \mu_{ga} - d \left(p_{d} + p_{u} \right) > 0$.

Si ha: $\Delta = 3$ quind: Ou.

b) Poiche $\chi = \frac{\Delta}{(\mu - d)(p_{d} + p_{u})} = 0.06$ è minor di $\frac{C_{un}}{q_{d} + c_{un}} = 0.99$ $2^{d} = \frac{1}{\alpha} \log \left[\frac{C_{q} + C_{un}}{C_{q}} \left(\frac{1 - \gamma}{q_{d}} \right) \right] = \frac{C_{q} + C_{q}}{C_{q}} \left(\frac{1 - \gamma}{q_{d}} \right) = \frac{C_{q} + C_{q}}{C_{q}} \left(\frac{1 - \gamma}{q_{d}} \right) > 5$

Di qui: $\log \left[\frac{C_{q} + C_{un}}{C_{q}} \left(\frac{1 - \gamma}{q_{d}} \right) \right] > 5$

Quind: $(C_{p} + C_{un}) \left(\frac{1 - \gamma}{q_{d}} \right) > C_{q} + C_{q$

11 costo othmo J = Sop(x) p(x, 2) dx + 8p(8+). Si può colcolare houendo 7 = 69.76 (basta scriverlo come for (-cm) p(x, i) dx + 1 6 6 x p(x, 1) dx + 4 6 7 84) Si note come $J^* > g(\bar{x}) = G\bar{x} = 54.1$ Questo si potera previden dalla Convessità della f(x) per cui p (Combinatione converte) € comb. converte di p(.). In effetti $\overline{x} = \int_{-\infty}^{\infty} h p(x,b) dx + y = i$ i une combinatione convisie di voloni di $x \in J^* = \int_{-\infty}^{34} g(x) p(x, b) dx + \nabla g(x^*) = la stera combinations$ converse di p(x). {A, C} con {1,2,4} (BD) on (3,5) b) WL, = (0.3+ 0.2). W = 5 mm/pz Si = [WLi. Rp] con Rp = 73 pt/on WL2 = (0.3+0.2). w = 5 " WL3 = (0.4+01.2).10 = 6 " D S,= 15.73/60 = [6.1] = 7 WL = (0.2). w = 2 11 as L Sz = [5. 73/60] = [6.1] = 7 WL5 = (0.4 + 0.1) 10 = 5 11 WLo = (0.3 + 0.4 + 0.2.2 + 0.1.2) = 0.65 11 S3 = [6.73/6] = [7.3] = & Sy= [2.73/60] = [2.43] = 3 S5= [5.73/6]= [6.7]=7 Sc = [0.6.73/6-7= [0.79] = 1 ±

E5.3 Nella modelità di funtionamento, il PLC ripeti periodicamenti un coclo composito da 3 tari: lettura igaresa, esecutione programme, s'enthura uscit. La durete di questo ciclo è detta tempo di scansione e dipunde dalle lumpnette del programma U suo ordine di gandreta è 1-10 ms. [Vedere parti 1 appunti pop. 27-28].