
Chapter 1

Probability reminds

1.1 The Bayes Rule

Let A and B be two events. Then:

p(A|B) = p(B|A)
p(A)

p(B)
(1.1)

This property simply follows from the definition of the conditioned probability: p(A|B) = p(A∩B)
p(B) .

Then we have p(A ∩ B) = p(A|B)p(B) and also p(A ∩ B) = p(B ∩ A) = p(B|A)p(A), that is
p(A|B)p(B) = p(B|A)p(A), from which (1.1) follows.

If there is a third conditioning event C, we may write

p(A|B,C) = p(B|A,C)
p(A|C)

p(B|C)
.

In fact,

p(A|B,C) = p(A|B ∩ C) =
p(A ∩ B ∩ C)

p(B ∩ C)
=

p(B ∩ A ∩ C)

p(B ∩ C)
= p(B|A ∩ C)

p(A ∩ C)

p(B ∩ C)

= p(B|A ∩ C)
p(A|C)p(C)

p(B|C)p(C)
= p(B|A,C)

p(A|C)

p(B|C)
.

1.2 Total Probability Theorem

Let A be an event and Bi, i = 1, 2, . . . , n be a partition of the sample space Ω, i.e. Bi ∩ Bj = ∅ and
⋃n

i=1 Bi = Ω. Then

p(A) =
n∑

i=1

p(A|Bi)p(Bi) (1.2)

This property follows form the Bayes rule and from the fact that p(A) =
∑n

i=1 p(A ∩ Bi).

1.3 Independence

Two events A and B (or two random variables) are said independent if p(A|B) = p(A) (that is the
probability that A occurs is not modified by the fact that event B occurred or less). From the definition
of conditioned probability it follows the well known property that if A and B are independent

p(A ∩ B) = p(A|B)p(B) =
︸︷︷︸

indip.

p(A)p(B),
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that is the probability of the simultaneous occurrence of two independent events is the product of
their probabilities.

1.4 Expectation, variance, covariance and correlation

We deal only with continuous random variables (the definition for the discrete case is completely
equivalent). Given a (continuous) random variable with probability density function (pdf) p(x), the
expectation of x is the quantity

mx = E[x] =

∫
∞

−∞

xp(x)dx

and is also called the mean of x. It is also possible to compute the expectation of any function f(x)
of the random variable x by E[f(x)] =

∫
∞

−∞
f(x)p(x)dx. In particular, the following quantity

σ2
x = E[(x − mx)2]

is the variance of the random variable x and tells about the uncertainty of x (σ2
x = 0 is the variance

of a deterministic quantity). The quantity σx is called the standard deviation of x.
Given two random variables x and y, the covariance of x and y is defined as:

σxy = E[(x − mx)(y − my)]

and is a measure of the connection between the two variables. It is often used a normalized version of
the covariance which is the correlation

ρxy =
σxy

σxσy

Observing that the covariance of two random variables x and y can be seen as an inner product
between them and that the standard deviation of a random variable x can be seen as the norm of x
induced by this inner product, the Cauchy-Schwarz inequality implies:

1 ≤ ρxy ≤ 1,

that is, the correlation between x and y ranges from −1 (x and y negatively correlated) to 1 (x and
y positively correlated). If ρxy = 0, x and y are said uncorrelated. It is important to observe that two
independent random variables are always uncorrelated. In fact we have:

σxy = E[(x − mx)(y − my)] =

∫ ∫

(x − mx)(y − my)p(x, y)dxdy

=
︸︷︷︸

if independent

∫

(x − mx)p(x)dx

∫

(y − my)p(y)dy = 0

So, independence implies uncorrelation, while the vice versa is in general not true: it holds, as
mentioned afterwards, when x and y are jointly Gaussian. An example of uncorrelated but dependent
random variables will be sketched next.

The extension to random vectors is immediate. Let x ∈ ℜn be a random vector with pdf p(x) =
p(x1, x2, . . . , xn). Then:

mx = E[x] =

∫

. . .

∫

xp(x)dx1 . . . dxn =

∫

. . .

∫






x1
...

xn




 p(x1, . . . , xn)dx1 . . . dxn
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=






∫
. . .

∫
x1p(x1, x2, . . . , xn)dx1 . . . dxn

...
∫

. . .
∫

xnp(x1, x2, . . . , xn)dx1 . . . dxn






=






∫
dx1x1

∫
dx2 . . .

∫
dxnp(x1, x2, . . . , xn)
...

∫
dxnxn

∫
dx1 . . .

∫
dxn−1p(x1, x2, . . . , xn)




 =






∫
x1p(x1)dx1

...
∫

xnp(xn)dxn




 =






E[x1]
...

E[xn]






since, as mentioned in Section 1.2 for the discrete case,
∫

dx2 . . .
∫

dxnp(x1, . . . , xn) = p(x1) (and
similarly for the other terms). In place of the variance of a vector x we introduce the covariance
matrix

Σx = E[(x − mx)(x − mx)′]

which is a symmetric positive semidefinite n × n matrix. It is positive semidefinite because, for any
constant vector a, a′Σxa is the variance of the random variable a′x, which can not be negative.

1.5 Gaussian Random Vectors

A (scalar) Gaussian random variable x takes values on (−∞,∞) according to the following probability
density function:

p(x) =
1

σ
√

2π
e−

1
2

(x−m)2

σ2 (1.3)

where m is the expected value of x:

m = E[x] =

∫
∞

−∞

x p(x) dx

and σ2 is the variance of x:

σ2 = E[(x − m)2] =

∫
∞

−∞

(x − m)2 p(x) dx = E[x2] − m2.

It is often used the notation x ∼ N (m,σ2) to indicate that x is a Gaussian random variable with
mean m and variance σ2. We will also use the notation N (ξ;m,σ2) to indicate that the Gaussian pdf
N (m,σ2) given in (1.3) is evaluated at x = ξ.

Definition 1 A vector x ∈ ℜn, x = [x1, x2, . . . , xn]′, is a Gaussian random vector if any linear
combination of its variables is a Gaussian random variable. That is, for any a ∈ ℜn, y = a′ · x ∼
N (my, σ

2
y) for proper my and σ2

y.

Clearly, given a Gaussian random vector x = [x1, x2, . . . , xn]′, any xi is a Gaussian random variable:
it is enough to take in Definition 1 a such that ai = 1 and aj = 0 for all j 6= i. The vice versa is not
true in general, i.e., if x1 ∼ N (m1, σ

2
1) and x2 ∼ N (m2, σ

2
2) are Gaussian, the vector x = [x1, x2]

′ is
not necessarily a Gaussian random vector, as the following example shows.

Example 1 Let x1 ∼ N (0, σ2) and define

x2 =

{
x1 if |x1| ≤ 1
−x1 if |x1| > 1

It is possible to see that also x2 is a Gaussian random variable, in particular x2 ∼ N (0, σ2). However,
x = [x1, x2]

′ is not a Gaussian random vector: just take the linear combination y = x1 +x2 to see that

y =

{
2x1 if |x1| ≤ 1
0 if |x1| > 1

is clearly not a Gaussian random variable (in particular |y| ≤ 2 does not range in (−∞,∞)).
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However, if x1 ∼ N (m1, σ
2
1) and x2 ∼ N (m2, σ

2
2) are Gaussian and independent, then x = [x1, x2]

′

is a Gaussian random vector. This can be proven using the characteristic function1. In fact, if x1

and x2 are two independent Gaussian random variables, any linear combination of them is the sum
of two properly scaled independent Gaussian random variables. Since the characteristic function of
the sum of two independent random variables is the product of their characteristic functions (this
holds in general also for non Gaussian random variables and depends on the fact that the pdf of the
sum of two independent random variables is the convolution of their pdf), using the expression of the
characteristing function of a Gaussian random variable, we get the desired property that the linear
combination of independent Gaussian random variables is Gaussian. We omit the details of this proof.

Using the characteristic function, it is also possible to show the following important result, which
proof is not difficult but is omitted for brevity.

Theorem 1 Let x = [x1, x2, . . . , xn]′ be a Gaussian random vector. Then

p(x) =
1

√

det(2π · Σ)
e−

1
2
(x−m)′Σ−1(x−m) (1.4)

where m = E[x] ∈ ℜn is the expected value of x and Σ = E[(x−m)(x−m)′] ∈ ℜn×n is the covariance
matrix of x.

Similarly to the scalar case, it is often used the notation x ∼ N (m,Σ) to indicate that x is a Gaussian
random vector with mean m and covariance matrix Σ. The elements of Σ are such that Σii = σ2

i =
E[(xi − mi)

2] is the variance of xi and Σij = σij = E[(xi − mi)(xj − mj)] is the covariance of xi and
xj. As mentioned above, if σij = 0, xi and xj are uncorrelated, and it is easy to verify from the pdf
expression given in Theorem 1 that two jointly Gaussian random variables are independent if and only
if they are uncorrelated2. In fact we already know that independence always implies uncorrelation.
But, if two joint Gaussian variables x and y are uncorrelated, (x, y) is a Gaussian random vector with
a diagonal covariance matrix Σ. It is then possible to factorize the pdf, i.e. p(x, y) = p(x)p(y) which
proves the independence of x and y.

1.5.1 Properties of Gaussian random vectors

We present some important properties of Gaussian random vectors, useful for the derivation of the
Kalman Filter.

1. A linear transformation of a Gaussian random vector gives a Gaussian random
vector.

Let x = [x1, . . . , xn]′ ∼ N (m,Σ) be a Gaussian random vector and consider y = Ax, where A is
a q × n matrix. Then also y ∈ ℜq is a Gaussian random vector, with y ∼ N (A · m,AΣA′).

In fact, if x is Gaussian, for all a ∈ ℜn, a′x is a Gaussian random variable. Also y is Gaussian
if for all b ∈ ℜq, b′y is a Gaussian random variable. Now, b′y = b′Ax = a′x (with a = A′b) is a
Gaussian random variable.

Since
E[y] = E[Ax] = A · E[x] = A · m

1The characteristic function of a random variable x with density p(x) is defined as Fx(jv) = E[ejvx], where j is the
imaginary unit. Actually, the characteristic function is a sort of Fourier Transform for probability density functions.
This definition can be naturally extended also to random vectors x by taking Fx(jv) = E[ejv′x] = E[ej(v1x1+...+vnxn)].

2Notice that this is not true for two generic Gaussian random variables: in particular it is possible to show that
for a proper value of σ the two variables in Example 1 are uncorrelated with E[(x1 − m1)(x2 − m2)] = E[x1x2] =
∫

|x1|<1
x2

1p(x1)dx1 −
∫

|x1|>1
x2

1p(x1)dx1 = 0 but are clearly not independent. This is because they are Gaussian but not

jointly Gaussian.
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and

E[(y − my)(y − my)
′] = E[A(x − m)(x − m)′A′] = AE[(x − m)(x − m)′]A′ = AΣA′,

it follows that y ∼ N (A · m,AΣA′).

2. The sum of two independent Gaussian random vectors is a Gaussian random vector.

Let x1 ∼ N (m1,Σ1) and x2 ∼ N (m2,Σ2) be two independent Gaussian random vectors. Then
z = x1 + x2 is a Gaussian random vector z ∼ N (m1 + m2,Σ1 + Σ2).

Now, as mentioned, the sum of two independent Gaussian random variables is a Gaussian random
variable. Its mean is the sum of the means and its variance is the sum of the variances (mean and
variance of the sum of two independent random variables is the sum of the means and respectively
of the variances also in the case of non Gaussian random variables, as it is easy to verify). This
implies that the vector w = [x′

1, x
′

2]
′ is a Gaussian vector. In fact, for any a1, y1 = a′1 · x1 is a

Gaussian random variable and for any a2, y2 = a′2 ·x2 is a Gaussian random variable. Clearly y1

and y2 are independent for any a1 and a2, hence it is a Gaussian variable also the sum y1 + y2.
But then, for any c ∈ ℜ2n, letting c = [a′1 a′2]

′, it follows that c′w = a′1x1 + a′2x2 = y1 + y2 is a
Gaussian random variable. So w is a Gaussian random vector.

Consider now the linear transformation

z = Aw = [In In]

[
x1

x2

]

where In is the identity matrix of dimension n. Clearly z = x1 + x2. According to property 1, z
is also a Gaussian random vector with

mz = A · mw = [In In]

[
m1

m2

]

= m1 + m2

and

Σz = AΣwA′ = [In In]

[
Σ1 0n

0n Σ2

] [
In

In

]

= Σ1 + Σ2.

3. The affine combination of independent Gaussian random vectors is a Gaussian ran-
dom vector.

Combining the two previous properties, one gets the following property. Let x ∼ N (mx,Σx) and
y ∼ N (my,Σy) be two independent Gaussian random vectors and b a constant vector. Then

z = Ax + By + b

is also a Gaussian random vector with mean

mz = Amx + Bmy + b

and covariance matrix
Σz = AΣxA′ + BΣyB

′.
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Chapter 2

Estimators

Let x ∈ ℜn be a vector of unknown to be estimated and let Y = [y1, y2, . . . , yt]
′ be a vector of (e.g.

scalar) measurements correlated with x under a proper model1 in such a way that it is well defined
the conditioned probability of x given Y

p(x|Y ).

Define, accordingly,

E[x|Y ] =

∫
∞

−∞

xp(x|Y )dx

the expectation of x given Y .
An estimator of x given Y is a quantity x̂ which depends deterministically on Y and tries to guess

the value of x, according to some criterion. We introduce some possible estimators.

2.1 Least Square estimator

A LSQ estimator of x given Y is the quantity x̂LSQ minimizing the expected square error, i.e.

x̂LSQ = arg min
x̂

E[(x̂ − x)′(x̂ − x)|Y ]

The following facts hold, as shown subsequently:

1. The LSQ estimator is the conditioned expected value of x, i.e.

x̂LSQ = x̄Y = E[x|Y ].

2. If
P̂ = E[(x̂ − x)(x̂ − x)′|Y ]

is the covariance matrix associated with a given estimator x̂, then

• the covariance matrix P̂LSQ of x̂LSQ is the covariance matrix of x given Y (i.e. P̂LSQ = PY ,

where PY = E[(x− x̄Y )(x− x̄Y )′|Y ]) and is such that P̂ − P̂LSQ is positive semidefinite (i.e.
the LSQ estimator is a minimum variance estimator, in the sense that in the scalar case
it has the minimum variance while in the vectorial case it is the estimator x̂ minimizing
w′P̂w for any w, in such a way that, if we want to estimate a linear combination w′x of x,
the estimator with minimum variance is w′x̂LSQ);

• the expected square error is the trace of P̂ , hence x̂LSQ, by definition, minimizes tr(P̂ ).

1You may think for example that yi = Cix + ni where ni is some noise, i = 1, 2, . . . and that in the absence of noises
it is possible to uniquely determine x from Y . However this is not essential in the definitions given in this section.
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Let’s show the first fact, that x̂LSQ = E[x|Y ] (denoted for brevity x̄Y ). Take any estimator x̂ =
x̄Y + vY , where vY is a deterministic vector function of Y . Then we have, for the expected square
error:

E[(x̂ − x)′(x̂ − x)|Y ] = E[(x̄Y + vY − x)′(x̄Y + vY − x)|Y ] = E[(x̄Y − x)′(x̄Y − x)|Y ]

+2E[v′Y (x̄Y − x)|Y ] + v′Y vY = trace(PY ) + 2v′Y E[(x̄Y − x)|Y ] + ‖vY ‖2 = trace(PY ) + ‖vY ‖2

Clearly, since PY does not depend on x̂, this error is minimized by taking vY = 0, i.e. x̂LSQ = x̄Y .
This also implies that PLSQ = PY .

Similarly, for any estimator x̂ = x̄Y + vY , we have:

P̂ = E[(x̂ − x)(x̂ − x)′|Y ] = E[(x̄Y + vY − x)(x̄Y + vY − x)′|Y ] = E[(x̄Y − x)(x̄Y − x)′|Y ]

+2E[vY (x̄Y − x)′|Y ] + vY v′Y = PY + 2vY E[(x̄Y − x)′|Y ] + vY v′Y = PY + vY v′Y = PY + V = P̂LSQ + V

for some positive semidefinite matrix V = vY v′Y . This shows the second fact, that P̂ − P̂LSQ is positive
semidefinite. The third fact follows, as mentioned, from the definition of x̂LSQ.

2.2 Maximum Likelihood estimator

A ML estimator x̂ML of x given Y is the quantity x maximizing the probability of obtaining the
measurements Y , i.e.

x̂ML = arg max
x

p(Y |x)

2.3 Maximum A Posteriori estimator

A MAP estimator x̂MAP of x given Y is the most likely x corresponding to the measurements Y , i.e.

x̂MAP = arg max
x

p(x|Y )

This estimator differs from the ML estimator because the ML ignores the a priori probability
density of x. To see this, let p(x) be the a priori probability of x (i.e. the pdf describing the possible
values of x before taking the measurements; if p(x) is uniform, that is no prior information is available
on possible values of x, it is x̂ML ≡ x̂MAP ). Then, applying the Bayes rule, we have:

x̂MAP = arg max
x

p(x|Y )

Bayes
︷︸︸︷
= arg max

x
p(Y |x)

p(x)

p(Y )
= arg max

x
p(Y |x)p(x)

where the last equality depends on the fact that p(Y ) is independent of x. So:

x̂MAP = arg max
x

p(Y |x)p(x)

x̂ML = arg max
x

p(Y |x)

In robotics applications, it is important to take into account the prior knowledge of x, i.e. p(x). For
this reason, a MAP estimator will be usually more appealing w.r.t. a ML estimator.
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Chapter 3

The Kalman Filter

Consider the discrete time linear system:

xk = Axk−1 + Buk−1 + wk−1 (3.1)

yk = Cxk + vk (3.2)

where xk ∈ ℜn, yk ∈ ℜq, uk ∈ ℜp and the vectors wk, vk are two Gaussian white sequences1 of noise,
independent one each other and independent of x0, which is also assumed Gaussian. In particular:

x0 ∼ N (m0, P0)

wk ∼ N (0, Qk) vk ∼ N (0, Rk)

where Rk is assumed strictly positive definite (this is usually of practical interest, since it corresponds
to the fact that it is not possible to find a linear combination of the measurements yk which is not
noisy). We have assumed that the noise wk−1 in (3.1) is not pre-multiplied by any matrix. This is
w.l.o.g. since, if we have xk = Axk−1 + Buk−1 + Bwwk−1, it is possible to define a noise w̄k = Bwwk

which is still a white Gaussian sequence and has a covariance matrix given by Q̄k = BwQkB
′

w. Also vk

in (3.2) could be pre-multiplied by a matrix Cv: the only assumption in this case is that the resulting
covariance matrix R̄k = CvRkC

′

v is strictly positive definite. Finally, the case the noises are not zero
mean can be easily handled with minor modifications (just subsume the known expected value of the
noise wk−1 in the constant term Buk−1 and add a constant vector to the equation in (3.2)).

Under these assumptions (i.e.: linearity of the dynamics, Gaussianity of the noise and independence
of the sequences) we have the following strong property: the probability density function of xk

conditioned on past measurements (and controls) is Gaussian. More in detail, let

yk = {y1, y2, . . . , yk} and uk−1 = {u0, u1, . . . , uk−1}
denote the sequence of measurements and control inputs available at time k. Then, the a priori
posterior p(xk|uk−1, yk−1) (i.e. considering all previous measurements and controls but not the last
available measurement yk) and the a posteriori posterior p(xk|uk−1, yk) (i.e. considering all available
measurements and controls, i.e. also the last measurement yk) are Gaussian densities! We will adopt
the following notation:

p(xk|uk−1, yk−1) = N (m−

k , P−

k ) (3.3)

p(xk|uk−1, yk) = N (mk, Pk) (3.4)

This fact, which will be shown in this section, has the following strong implications:

1A sequence is said Gaussian if any set of its elements has a jointly Gaussian pdf. It is said white if each element νk

in the sequence is 0-mean and is uncorrelated with the others, i.e., E[νkν′
h] = Skδ(k − h), for some positive semidefinite

matrix Sk (where δ(k−h) = 1 if h = k and is 0 otherwise). Since in the Gaussian case uncorrelation implies independence,
a white Gaussian sequence is also an i.i.d. (independent and identically distributed) Gaussian sequence, where i.i.d.
means that all the elements in the sequence have the same pdf and are independent one each other.
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• Since a Gaussian density is completely described through its mean and covariance matrix, an
algorithm which is able to compute the updated means m−

k and mk and covariance matrices
P−

k and Pk provides the complete description of the possible values the state xk can take. The
algorithm which performs this service is the Kalman Filter.

• Since the Gaussian density is unimodal, with the maximum coincident with the expected value,
according to what mentioned in Chapter 2, the Kalman filter provides through the updated value
of the means m−

k and mk both the LSQ and the MAP estimates of the state xk of the system.
But, also, through the covariance matrices P−

k and Pk, it gives a measurement of the quality of
the estimate.

3.1 Proof of Gaussianity

In this section we prove (3.3)-(3.4) and provide the recursive equations to compute m−

k , mk, P−

k and
Pk, which are indeed the equations of the Kalman Filter.

3.1.1 The prediction step of the Kalman Filter

The prior density p(xk|uk−1, yk−1) which uses the last control uk−1 but not the last measurement yk

is a prediction on the next value xk of the state. We show (3.3) and provide the equations of the
prediction step of the Kalman Filter, namely:

m−

k = Amk−1 + Buk−1 (3.5)

P−

k = APk−1A
′ + Qk−1 (3.6)

This can be shown in a very straightforward manner by considering the results reported in Chapter 1.
In particular, by induction on the fact that x0 ∼ N (m0, P0) is a Gaussian random vector, by assuming
that p(xk−1|uk−2, yk−1) = N (mk−1, Pk−1) is Gaussian, i.e. that xk−1 given all available measurements
yk−1 and controls uk−2 is a Gaussian vector, we show that this holds also for p(xk|uk−1, yk−1), i.e.
that xk given all available controls uk−1 and past measurements yk−1, is still a Gaussian vector. Now

xk = Axk−1 + Buk−1 + wk−1

is an affine combination of independent Gaussian vectors (xk−1 and wk−1). Hence, according to
Chapter 1, xk is also a Gaussian vector with:

m−

k = E[xk|uk−1, yk−1] = E[Axk−1 + Buk−1 + wk−1|uk−1, yk−1] = AE[xk−1|uk−1, yk−1] + Buk−1

= AE[xk−1|uk−2, yk−1] + Buk−1 = Amk−1 + Buk−1. (3.7)

Similarly, omitting for brevity the conditioning information {uk−1, yk−1} from the expectations and
using the independence of wk−1 w.r.t. xk−1 (which indeed depends on wk−2):

P−

k = E[(xk − m−

k )(xk − m−

k )′] = E[(A(xk−1 − mk−1) + wk−1)(A(xk−1 − mk−1) + wk−1)
′]

= AE[(xk−1 − mk−1)(xk−1 − mk−1)
′]A′ + E[wk−1w

′

k−1] = APk−1A
′ + Qk−1. (3.8)

3.1.2 The correction step

Exploiting also the last available measurement yk, we correct the prior estimation m−

k on xk as follows.

p(xk|uk−1, yk) = p(xk|yk, u
k−1, yk−1) =

︸︷︷︸

Bayes

p(yk|xk, u
k−1, yk−1)

p(xk|uk−1, yk−1)

p(yk|uk−1, yk−1)

9
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= η p(yk|xk, u
k−1, yk−1)p(xk|uk−1, yk−1) (3.9)

where the last equality depends on the fact that p(yk|uk−1, yk−1) is a constant equal for all xk and is
written as a normalizing factor η. Now,

p(yk|xk, u
k−1, yk−1) = p(yk|xk)

since, from yk = Cxk + vk, if we know xk, yk is independent of the past controls and measurements
(also in view of the hypothesis on the sequence vk). Now, we have just shown that

p(xk|uk−1, yk−1) = N (m−

k , P−

k )

and, in addition,
p(yk|xk) = pvk

(yk − Cxk)

where pvk
(s) = N (s; 0, Rk) = 1

det(2πRk)1/2 e−
1
2
s′Rks is the pdf of the noise vk. So, (3.9) can be written

as follows:

p(xk|uk−1, yk) = η p(yk|xk)p(xk|uk−1, yk−1) = η N (yk − Cxk; 0, Rk)N (xk;m
−

k , P−

k ). (3.10)

This is the product between two Gaussians, where the argument of the two exponentials sums and
gives (omitting the factor −1/2):

argExp = (xk − m−

k )′(P−

k )−1(xk − m−

k ) + (yk − Cxk)
′R−1

k (yk − Cxk)

Omitting for simplicity the sub k and the superscript −, the previous equation can be written:

argExp = (x − m)′P−1(x − m) + (y − Cx)′R−1(y − Cx)

Expanding the products, we get:

argExp = x′(P−1 + C ′R−1C)x − 2(m′P−1 + y′R−1C)x + G (3.11)

where G is a quantity independent of x which can be subsumed in the normalization term η in (3.9).
To show that p(xk|uk−1, yk) in (3.10) is a Gaussian density, we have to show that argExp is a quadratic
form of x, i.e., that there exist a symmetric and positive definite matrix S and a vector a such that

x′(P−1 + C ′R−1C)x − 2(m′P−1 + y′R−1C)x = (x − a)′S−1(x − a) + H (3.12)

where H, again, is some constant quantity independent of x. Expanding the products, we obtain:

(x − a)′S−1(x − a) = x′S−1x − 2a′S−1x + a′S−1a (3.13)

Combining (3.12) and (3.13), we can conclude on the Gaussianity of p(xk|uk−1, yk) if it is possible to
determine S and a (which will correspond respectively to Pk and mk) such that:

S−1 = P−1 + C ′R−1C (3.14)

a′S−1 = m′P−1 + y′R−1C (3.15)

We exploit the following linear algebra result, where A, B, C and D are matrices (with proper
dimensions) with A and C invertible:

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 (3.16)

Applying this formula to (3.14) we see that S exists and is given by:

S = (P−1
︸︷︷︸

A

+ C ′

︸︷︷︸

B

R−1
︸︷︷︸

C

C
︸︷︷︸

D

)−1 = P − PC ′(CPC ′ + R)−1CP = [I − PC ′(CPC ′ + R)−1C]P. (3.17)
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If S exists, also a is well defined and this concludes the proof that p(xk|uk−1, yk) is a Gaussian pdf.
About the computation of mk = a and of Pk = S we proceed as follows.

Reintroducing the sub k and the superscript − in (3.17) we obtain:

Pk = [I − P−

k C ′(CP−

k C ′ + Rk)
−1C]P−

k

Defining the Kalman gain:
Kk = P−

k C ′(CP−

k C ′ + Rk)
−1, (3.18)

we finally have:
Pk = [I − KkC]P−

k (3.19)

As for a (i.e. mk), we have from (3.15):

S−1a = C ′R−1y + P−1m

i.e.

a = S(C ′R−1y+P−1m) = S[C ′R−1(Cm+y−Cm)+P−1m] = S [C ′R−1C + P−1]
︸ ︷︷ ︸

S−1

m+SC ′R−1(y−Cm)

= m + L(y − Cm) (3.20)

where L = SC ′R−1. Using the expression of S given in (3.17):

L = [I − PC ′(CPC ′ + R)−1C]PC ′R−1 = PC ′R−1 − PC ′(CPC ′ + R)−1CPC ′R−1

= PC ′[R−1 − (CPC ′ + R)−1CPC ′R−1]

Using again the formula reported in (3.16):

L = PC ′[R−1
︸︷︷︸

A

−
︸︷︷︸

B

(CPC ′ + R)−1

︸ ︷︷ ︸

C

CPC ′R−1
︸ ︷︷ ︸

D

] = PC ′(R+R(−CPC ′R−1R+CPC ′+R)−1CPC ′R−1R)−1

= PC ′(R + RR−1CPC ′R−1R)−1 = PC ′(R + CPC ′)−1

Reintroducing also here the sub k and the superscript −, we obtain:

L = P−

k C ′(Rk + CP−

k C ′)−1

which is exactly the Kalman Gain (see (3.18))! So from (3.20), where a is the mean mk of p(xk|uk−1, yk)
and m = m−

k , we finally have:
mk = m−

k + Kk (yk − Cm−

k )
︸ ︷︷ ︸

innovation

, (3.21)

The term denoted as innovation in (3.21) plays a crucial role: it provides a correction to the predicted
value m−

k according to the difference between the actual measurement yk and the expected measure-
ment Cm−

k . The optimal weight to assign to the correction w.r.t. the predicted value m−

k is given by
the Kalman Gain. In conclusion, remembering that the estimation provided by the Kalman Filter is
the mean of the distributions, i.e. x̂−

k = m−

k and x̂k = mk, the equations (3.7), (3.8), (3.18), (3.21)
and (3.19) define the Kalman Filter and are summarized for convenience in the following algorithm.

Algorithm 1 The Kalman Filter (KF)
Assume x0 ∼ N (m0, P0) and initialize the filter by x̂0 = m0. At each time k ≥ 1 we have the

following recursive equations:

x̂−

k = Ax̂k−1 + Buk−1 (3.22)

P−

k = APk−1A
′ + Qk−1 (3.23)

Kk = P−

k C ′(CP−

k C ′ + Rk)
−1 (3.24)

x̂k = x̂−

k + Kk(yk − Cm−

k ) (3.25)

Pk = [I − KkC]P−

k (3.26)
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3.2 Observations

These observations are taken from the textbook “Dalla Mora, Germani, Manes: Introduzione alla
teoria dell’identificazione dei sistemi”.

• As mentioned, the Kalman filter provides the LSQ and the MAP estimation of the state at all
times k and also, through the covariance matrix, the quality of the estimates.

• The Kalman Gain, which involves the main burden of computations, can be computed off line,
being independent of the measurements.

• The Kalman filter is optimal at all times k if it starts with the correct estimate and the correct
covariance matrix. However, as discussed shortly below, under proper conditions, the KF is
asymptotically optimal under any initialization.

• Even if the system is stationary (i.e. A, B, C and D are constant and Rk = R, Qk = Q)
the KF is not stationary (Kk remains time dependent). However, under proper conditions, the
covariance matrices Pk and the Kalman gain Kk converge to a steady state value P̄ and K̄
and the (stationary) KF (i.e. the one which uses the stationary Kalman gain) is asymptotically
optimal.

Consider now a stationary system. Using (3.16), (3.23), (3.24) and (3.26), we have:

Pk+1 = (I − Kk)(APkA′ + Q) = [ I
︸︷︷︸

A

−(APkA
′ + Q)C ′

︸ ︷︷ ︸

B

(C(APkA
′ + Q)C ′ + R)−1

︸ ︷︷ ︸

C

C
︸︷︷︸

D

](APkA′ + Q)

=
[
I + (APkA

′ + Q)C ′(−C(APkA
′ + Q)C ′ + C(APkA

′ + Q)C ′ + R)−1C
]−1

(APkA
′ + Q)

=
[
I + (APkA′ + Q)C ′R−1C

]−1
(APkA′ + Q)

Assuming Pk reaches a steady state value P̄ , the previous equation becomes (at steady state):

P̄ =
[
I + (AP̄A′ + Q)C ′R−1C

]−1
(AP̄A′ + Q) (3.27)

which is known as the Algebraic Riccati Equation (ARE).
Now, if the couple (A,C) is detectable, then, for any positive semidefinite P0, Pk → P̄ , which is a

finite positive semidefinite matrix solution to the ARE (3.27) (P̄ is in general not unique and depends
on P0).

Let P̄ be a positive semidefinite matrix solution to the ARE (3.27). If (A,Q) is stabilizable, P̄ is
the unique positive semidefinite solution to the ARE (3.27) and is such that the dynamic matrix of
the Kalman filter has all the eigenvalues with modulus less than one.

The following theorem summarizes these properties (see the cited text for its proof).

Theorem 2 If the couple (A,C) is detectable and the couple (A,Q) is stabilizable then:

1. ∃! P̄ ≥ 0 solution of the ARE (3.27) which is such that:

lim
k→∞

Pk = P̄ for all P0

2. The KF is stable, that is the dynamic matrix of the filter has all the eigenvalues with modulus
less than one (and so the filter is independent at steady state of the initial estimate x̂0).

3. The KF with the steady state Kalman Gain is asymptotically optimal.
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