Chapter 1

Probability reminds

1.1 The Bayes Rule

Let A and B be two events. Then:

p(A|B) = p(Bw% (L1)

This property simply follows from the definition of the conditioned probability: p(A|B) = & (1:2???)'

Then we have p(A N B) = p(A|B)p(B) and also p(AN B) = p(BN A) = p(B|A)p(A), that is
p(A|B)p(B) = p(B|A)p(A), from which (1.1) follows.
If there is a third conditioning event C', we may write

B p(A[C)
p(A|B,C) = p(B|A, C)p(B|C)~
In fact,
B _p(AnBNnC) p(BNANC) p(ANC)
p(A|B,C) = p(A|IBNC) = WBNC) ~ B0 —p(BlAmc)m
B p(A|C)p(C) p(A[C)
=P BIANOY Biewe) ~ PP Doy

1.2 Total Probability Theorem

Let A be an event and B;, i = 1,2,...,n be a partition of the sample space Q, i.e. B;N Bj = () and
U?:l Bz = . Then

p(4) = 3 p(AIB)p(B,) (1.2)
i=1

This property follows form the Bayes rule and from the fact that p(A) = Y"1, p(AN B;).

1.3 Independence

Two events A and B (or two random variables) are said independent if p(A|B) = p(A) (that is the
probability that A occurs is not modified by the fact that event B occurred or less). From the definition
of conditioned probability it follows the well known property that if A and B are independent

p(AN B) = p(A|B)p(B) p(A)p(B),

Nig,
indip.
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that is the probability of the simultaneous occurrence of two independent events is the product of
their probabilities.

1.4 Expectation, variance, covariance and correlation

We deal only with continuous random variables (the definition for the discrete case is completely
equivalent). Given a (continuous) random variable with probability density function (pdf) p(z), the
expectation of x is the quantity

o0

m, = Elx] = / xp(z)dz

—0o
and is also called the mean of x. It is also possible to compute the expectation of any function f(z)
of the random variable « by E[f(z)] = [ f(2)p(x)dz. In particular, the following quantity

0% = Bl(x - m,)?]

is the variance of the random variable x and tells about the uncertainty of z (o2 = 0 is the variance
of a deterministic quantity). The quantity o, is called the standard deviation of x.

Given two random variables x and y, the covariance of z and y is defined as:
Ouy = El(x —me)(y —my)]

and is a measure of the connection between the two variables. It is often used a normalized version of
the covariance which is the correlation

Pzy =
Y 00y

Observing that the covariance of two random variables x and y can be seen as an inner product
between them and that the standard deviation of a random variable  can be seen as the norm of x
induced by this inner product, the Cauchy-Schwarz inequality implies:

1< pzy <1,

that is, the correlation between x and y ranges from —1 (z and y negatively correlated) to 1 (z and
y positively correlated). If p,, = 0, x and y are said uncorrelated. It is important to observe that two
independent random variables are always uncorrelated. In fact we have:

Gay = Bl( — ma)(y — my)] = / / (& — ma)(y — my)p(z, y)dedy

o [ammapns [ mpy=o

if independent
So, independence implies uncorrelation, while the vice versa is in general not true: it holds, as
mentioned afterwards, when z and y are jointly Gaussian. An example of uncorrelated but dependent
random variables will be sketched next.
The extension to random vectors is immediate. Let x € R" be a random vector with pdf p(z) =
p(z1,z2,...,2,). Then:

me= Bl = [ o [ aptaries ot = [ [ N

Tn
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[ Jop(zy, xe, ... zy)day ... dxy

[ Janp(zr, o, ... 2y)day .. day,

[dxizy [das ... [degp(zi,@2,. .. 20) [ x1p(a1)day Elxq]
fd:cnxn fd:cl .. fdxn,lp(xl,xg, ceyTy) f:cnp(:cn)dxn E[x,)
since, as mentioned in Section 1.2 for the discrete case, [dzs...[dznp(z1,...,2,) = p(z1) (and

similarly for the other terms). In place of the variance of a vector x we introduce the covariance
matrix

2 = El(z — my)(z —my)]
which is a symmetric positive semidefinite n X n matrix. It is positive semidefinite because, for any
constant vector a, a’Y;a is the variance of the random variable 'z, which can not be negative.

1.5 Gaussian Random Vectors

A (scalar) Gaussian random variable z takes values on (—oo, 00) according to the following probability

density function:
1 1 (zf'm)2

e 2 o2 (1.3)

p(x) = ovV2r

where m is the expected value of x:

m = Elz] = /OO 2 p(z) da

— 00
and o2 is the variance of x:
o0
02 =E[(z —m)? = / (z —m)? p(z) dz = E[z?] — m>.
—00
It is often used the notation z ~ N(m,o?) to indicate that z is a Gaussian random variable with

mean m and variance o2. We will also use the notation N (&;m,0?) to indicate that the Gaussian pdf
N(m,o?) given in (1.3) is evaluated at x = £.

Definition 1 A vector x € R", = [x1,x9,...,2,], is a« Gaussian random vector if any linear

combination of its variables is a Gaussian random wvariable. That is, for any a € R", y = a' - & ~
2 2

N (my,a,) for proper my and o,.

Clearly, given a Gaussian random vector x = [z1,z2, ..., x,]’, any x; is a Gaussian random variable:
it is enough to take in Definition 1 a such that a; = 1 and a; = 0 for all j # ¢. The vice versa is not
true in general, i.e., if 1 ~ N(mq,0}) and x5 ~ N (ma,03) are Gaussian, the vector = [, 1]’ is

not necessarily a Gaussian random vector, as the following example shows.
Example 1 Let z1 ~ N(0,0%) and define

Ty — xr1 z'f]xl\gl
27 =3 if | >1

It is possible to see that also x2 is a Gaussian random variable, in particular xo ~ N(0,0?). However,
x = [x1, 2] is not a Gaussian random vector: just take the linear combination y = x1 + xo to see that

. 2:61 Zf|$1|§1
Y=V 0 iffa]>1

is clearly not a Gaussian random variable (in particular |y| <2 does not range in (—oo,0)).
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However, if 71 ~ N (mq,0%) and x9 ~ N (mg,03) are Gaussian and independent, then x = [x1, 22’
is a Gaussian random vector. This can be proven using the characteristic function!. In fact, if 24
and x5 are two independent Gaussian random variables, any linear combination of them is the sum
of two properly scaled independent Gaussian random variables. Since the characteristic function of
the sum of two independent random variables is the product of their characteristic functions (this
holds in general also for non Gaussian random variables and depends on the fact that the pdf of the
sum of two independent random variables is the convolution of their pdf), using the expression of the
characteristing function of a Gaussian random variable, we get the desired property that the linear
combination of independent Gaussian random variables is Gaussian. We omit the details of this proof.

Using the characteristic function, it is also possible to show the following important result, which
proof is not difficult but is omitted for brevity.

Theorem 1 Let x = [x1,x2,...,%,]) be a Gaussian random vector. Then

p(@) = 3 amy = ) (1.4)

Vdet(2m - )

where m = Elz] € R™ is the expected value of x and X = E[(x —m)(x —m)'] € R"*" is the covariance
matrix of x.

Similarly to the scalar case, it is often used the notation x ~ N (m,X) to indicate that z is a Gaussian
random vector with mean m and covariance matrix . The elements of ¥ are such that >;; = 012 =
E[(x; — m;)?] is the variance of x; and %;; = 0;; = E[(x; — m;)(x; — m;)] is the covariance of z; and
x;. As mentioned above, if 0;; = 0, z; and x; are uncorrelated, and it is easy to verify from the pdf
expression given in Theorem 1 that two jointly Gaussian random variables are independent if and only
if they are uncorrelated?. In fact we already know that independence always implies uncorrelation.
But, if two joint Gaussian variables x and y are uncorrelated, (x,y) is a Gaussian random vector with
a diagonal covariance matrix X. It is then possible to factorize the pdf, i.e. p(z,y) = p(x)p(y) which
proves the independence of z and y.

1.5.1 Properties of Gaussian random vectors

We present some important properties of Gaussian random vectors, useful for the derivation of the
Kalman Filter.

1. A linear transformation of a Gaussian random vector gives a Gaussian random
vector.

Let = [x1,...,2,) ~ N(m,X) be a Gaussian random vector and consider y = Az, where A is
a ¢ x n matrix. Then also y € 17 is a Gaussian random vector, with y ~ N (A -m, AL A").

In fact, if z is Gaussian, for all a € R", @’z is a Gaussian random variable. Also y is Gaussian
if for all b € R, b’y is a Gaussian random variable. Now, b'y = b’ Az = a/z (with a = A'D) is a
Gaussian random variable.

Since

Ely) = E[Az] =A-FElz]=A-m

!The characteristic function of a random variable 2 with density p(z) is defined as F(jv) = E[e/"*], where j is the
imaginary unit. Actually, the characteristic function is a sort of Fourier Transform for probability density functions.
This definition can be naturally extended also to random vectors z by taking F,(jv) = E[ej“l”] = E[e/(1oittonzn))

2Notice that this is not true for two generic Gaussian random variables: in particular it is possible to show that
for a proper value of o the two variables in Example 1 are uncorrelated with E[(z1 — m1)(z2 — m2)] = E[zi1z2] =
mel x3p(z1)der — f\11\>1 z3p(z1)dz1 = 0 but are clearly not independent. This is because they are Gaussian but not
jointly Gaussian.
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and
El(y — my)(y - my)] = B[A(z —m)(& — m) A] = AB[(z —m)(x — m)] 4’ = ASA,
it follows that y ~ N(A-m, AL A").

2. The sum of two independent Gaussian random vectors is a Gaussian random vector.

Let 1 ~ N(mq,%1) and x9 ~ N (mg, X2) be two independent Gaussian random vectors. Then
z = x1 + x2 is a Gaussian random vector z ~ N (mj 4+ ma, X1 + 3o).

Now, as mentioned, the sum of two independent Gaussian random variables is a Gaussian random
variable. Its mean is the sum of the means and its variance is the sum of the variances (mean and
variance of the sum of two independent random variables is the sum of the means and respectively
of the variances also in the case of non Gaussian random variables, as it is easy to verify). This
implies that the vector w = [z, x}]) is a Gaussian vector. In fact, for any a1, y1 = a} - 21 is a
Gaussian random variable and for any as, ya = a} - 9 is a Gaussian random variable. Clearly y;
and ys are independent for any a; and as, hence it is a Gaussian variable also the sum y; + ys.
But then, for any ¢ € R2", letting ¢ = [a} ab]’, it follows that dw = ajx1 + dhze = y1 + Yo is a
Gaussian random variable. So w is a Gaussian random vector.

Consider now the linear transformation

Z2

2= Aw = [I, In]{xl]

where [, is the identity matrix of dimension n. Clearly z = x1 + x2. According to property 1, z
is also a Gaussian random vector with

mq

m, =A-my =[I, In][m
2

]:ml—i—mz

and

1 0 I
st 3 2 ][] s

3. The affine combination of independent Gaussian random vectors is a Gaussian ran-
dom vector.

Combining the two previous properties, one gets the following property. Let x ~ N (m,, X, ) and
y~N (my, Xy) be two independent Gaussian random vectors and b a constant vector. Then

z=Ax+By+b
is also a Gaussian random vector with mean
m, = Amg + Bmy +b

and covariance matrix
Y, =AY A + BEyB’.



Chapter 2

Estimators

Let 2 € R™ be a vector of unknown to be estimated and let Y = [y1,y2,...,v:] be a vector of (e.g.
scalar) measurements correlated with x under a proper model® in such a way that it is well defined
the conditioned probability of x given Y

p(z]Y).
Define, accordingly,
Elz|Y] :/ zp(z|Y)dx

—0o
the expectation of x given Y.

An estimator of x given Y is a quantity & which depends deterministically on Y and tries to guess
the value of z, according to some criterion. We introduce some possible estimators.

2.1 Least Square estimator
A LSQ estimator of = given Y is the quantity £75¢ minimizing the expected square error, i.e.
Trsq = argmin E[(# — z)'(2 — z)|Y]
€T

The following facts hold, as shown subsequently:

1. The LSQ estimator is the conditioned expected value of z, i.e.

iLSQ =Ty = E[:C|Y]

2. If R
P = Bl(@ - 2)(@ - a)|Y]

is the covariance matrix associated with a given estimator z, then

e the covariance matrix PLSQ of £1,5¢ is the covariance matrix of x given Y (i.e. PLSQ = Py,
where Py = E[(x —Zy)(z — Zy)'|Y]) and is such that P — Pygq is positive semidefinite (i.e.
the LSQ estimator is a minimum variance estimator, in the sense that in the scalar case
it has the minimum variance while in the vectorial case it is the estimator £ minimizing
w' Pw for any w, in such a way that, if we want to estimate a linear combination w'z of z,
the estimator with minimum variance is w'Z15¢);

e the expected square error is the trace of P, hence & 15Q, by definition, minimizes tr(p).

You may think for example that y; = C;x + n; where n; is some noise, i = 1,2, ... and that in the absence of noises
it is possible to uniquely determine x from Y. However this is not essential in the definitions given in this section.
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Let’s show the first fact, that 2559 = E[z|Y] (denoted for brevity zy). Take any estimator & =
Ty + vy, where vy is a deterministic vector function of Y. Then we have, for the expected square
€rTor:

El(# - 2)(& — 2)|Y] = E(@y + vy — ) (2y + vy — 2)|Y] = El(@y — )2y — 2)|Y]

+2EWy (By — 2)|Y] + vy = trace(Py) + 204y E[(Zy — x)|Y] + Hvy||2 = trace(Py) + HvyH2

Clearly, since Py does not depend on Z, this error is minimized by taking vy = 0, i.e. 159 = ZTy.
This also implies that Prsg = Py.
Similarly, for any estimator & = Ty + vy, we have:

P = E[(& —x)(& —2)|Y] = E[(Zy + vy —2)(Zy +vy —2)'|Y] = E[(Zy — 2)(Zy — 2)'|Y]
+2E[Uy(.f'y — .%')/‘Y] + ’Uy?)g/ =Py + 2’[)yE[(.f'y — x)'\Y] + Uy?)g/ =Py + Uy’l)g/ =P +V = PLSQ +V
for some positive semidefinite matrix V' = vyv},. This shows the second fact, that pP— PLSQ is positive
semidefinite. The third fact follows, as mentioned, from the definition of Z5¢.

2.2 Maximum Likelihood estimator

A ML estimator &7, of x given Y is the quantity & maximizing the probability of obtaining the
measurements Y, i.e.
Ty, = argmax p(Y|z)
x

2.3 Maximum A Posteriori estimator
A MAP estimator Zy;ap of x given Y is the most likely x corresponding to the measurements Y, i.e.
Eyap = argmax p(z|Y)
x

This estimator differs from the ML estimator because the ML ignores the a priori probability
density of x. To see this, let p(x) be the a priori probability of = (i.e. the pdf describing the possible
values of = before taking the measurements; if p(z) is uniform, that is no prior information is available
on possible values of z, it is Zpas;, = Zprap). Then, applying the Bayes rule, we have:

Bayes (SC)
Tpap =argmaxp(z|Y) 7= argmaxp(Y\x)p
x r p(Y)

= arg max p(Y|2)p(z)

where the last equality depends on the fact that p(Y') is independent of z. So:

Evap = argmaxp(Y|z)p(z)

Ty = argmaxp(Y|z)
x

In robotics applications, it is important to take into account the prior knowledge of x, i.e. p(x). For
this reason, a MAP estimator will be usually more appealing w.r.t. a ML estimator.



Chapter 3

The Kalman Filter

Consider the discrete time linear system:

rp = Axp_1+ Bug_1+wi_1 (3.1)
e = Cuxp+ oy (3.2)

where z, € ", y. € R9, up, € NP and the vectors wy, vy, are two Gaussian white sequences! of noise,
independent one each other and independent of z(, which is also assumed Gaussian. In particular:

zo ~ N (mg, Po)
w, ~ N(0,Qr) v ~N(0, Ry)

where Ry is assumed strictly positive definite (this is usually of practical interest, since it corresponds
to the fact that it is not possible to find a linear combination of the measurements y; which is not
noisy). We have assumed that the noise wg_1 in (3.1) is not pre-multiplied by any matrix. This is
w.l.o.g. since, if we have x, = Axp_1 + Bug_1 + Bywi_1, it is possible to define a noise wy = By,wy
which is still a white Gaussian sequence and has a covariance matrix given by Qj, = B,QyB.,. Also vy
in (3.2) could be pre-multiplied by a matrix C,: the only assumption in this case is that the resulting
covariance matrix Ry = C,RyC! is strictly positive definite. Finally, the case the noises are not zero
mean can be easily handled with minor modifications (just subsume the known expected value of the
noise wy_1 in the constant term Buy_; and add a constant vector to the equation in (3.2)).

Under these assumptions (i.e.: linearity of the dynamics, Gaussianity of the noise and independence
of the sequences) we have the following strong property: the probability density function of xj
conditioned on past measurements (and controls) is Gaussian. More in detail, let

yk:{ylayQa"'ayk} and uk_l :{u(]aula"'auk‘—l}

denote the sequence of measurements and control inputs available at time k. Then, the a priori
posterior p(z|uF~1,4%71) (i.e. considering all previous measurements and controls but not the last
available measurement y;) and the a posteriori posterior p(xy|u*~1 y*) (i.e. considering all available
measurements and controls, i.e. also the last measurement y;) are Gaussian densities! We will adopt
the following notation:

plaplu Ly = N(my,Py) (3.3)
pleglf YRy = N(mg, Pr)

This fact, which will be shown in this section, has the following strong implications:

! A sequence is said Gaussian if any set of its elements has a jointly Gaussian pdf. It is said white if each element vy
in the sequence is 0-mean and is uncorrelated with the others, i.e., E[vgyvy,] = Skd(k — h), for some positive semidefinite
matrix Sk (where §(k—h) = 1if h = k and is 0 otherwise). Since in the Gaussian case uncorrelation implies independence,
a white Gaussian sequence is also an i.i.d. (independent and identically distributed) Gaussian sequence, where i.i.d.
means that all the elements in the sequence have the same pdf and are independent one each other.
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e Since a Gaussian density is completely described through its mean and covariance matrix, an
algorithm which is able to compute the updated means m, and mj and covariance matrices
P and Py provides the complete description of the possible values the state xy, can take. The
algorithm which performs this service is the Kalman Filter.

e Since the Gaussian density is unimodal, with the maximum coincident with the expected value,
according to what mentioned in Chapter 2, the Kalman filter provides through the updated value
of the means m,. and my, both the LSQ and the MAP estimates of the state xy, of the system.
But, also, through the covariance matrices P, and P, it gives a measurement of the quality of
the estimate.

3.1 Proof of Gaussianity

In this section we prove (3.3)-(3.4) and provide the recursive equations to compute m, , my, P, and
Py, which are indeed the equations of the Kalman Filter.

3.1.1 The prediction step of the Kalman Filter

The prior density p(z;|uF~",y*~1) which uses the last control u_; but not the last measurement yy

is a prediction on the next value xj of the state. We show (3.3) and provide the equations of the
prediction step of the Kalman Filter, namely:

m, = Amy_1+ Bup_ (3.5)
P; = AP A+ Qi (3.6)

This can be shown in a very straightforward manner by considering the results reported in Chapter 1.
In particular, by induction on the fact that g ~ N (myg, Py) is a Gaussian random vector, by assuming
that p(zgp_q|uF~2,y*"1) = N(mp_1, P_1) is Gaussian, i.e. that 2j_; given all available measurements
y*~1 and controls ©*~2 is a Gaussian vector, we show that this holds also for p(zg|uf~!,y*71), i.e.

that x;, given all available controls ©*~1 and past measurements y*~1, is still a Gaussian vector. Now
xp = Azgp_1 + Bup_1 + w1

is an affine combination of independent Gaussian vectors (xp_; and wg_1). Hence, according to
Chapter 1, zj, is also a Gaussian vector with:

m, = Elzpuf~t, y* ) = E[Azp_1 + Bup_1 + wp_1|u* 1, ¥ 1) = AE[zp_1|u* 1, 4% + Buy_y

= AE[wk,lluk_2, yk_l] + Bug_1 = Amyp_1 + Bug_1. (3.7)
k=1 yk=11 from the expectations and
k:—2):

Similarly, omitting for brevity the conditioning information {u
using the independence of wy_1 w.r.t. zx_1 (which indeed depends on w

Py = El(zx —my ) (zx —my)'] = Bl(A(zr—1 — mg—1) + wp—1)(A(zg—1 — mp—1) +wp—1)']
= AE[(%‘]{,1 — mk,l)(xk,l — mkfl)/]A/ + E[wk,lwzfl] = APk,lA, + Qkfl- (3.8)
3.1.2 The correction step

Exploiting also the last available measurement yy, we correct the prior estimation m,; on xj, as follows.

kfl)

1 k;—l)

k—1
- - ~1 k-1 PR Y
p(xpuf 1 k) = plaplye, uF Ly k=1 ke €

= p(ykleg, v,y —
ot p(ye|uk—1, y+-1)
ayes

9
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=n plyklzr, v " Dplag ™ yF Y (3.9)

kfl’ykfl)

where the last equality depends on the fact that p(yx|u is a constant equal for all z; and is

written as a normalizing factor n. Now,

P(Yk|or, ' ) = plyk| k)

since, from y, = Czyp + v, if we know zg, yi is independent of the past controls and measurements
(also in view of the hypothesis on the sequence vy). Now, we have just shown that

plaxlu™, 95 7Y = N(my, BY)

and, in addition,
p(Yklzk) = pu, (yx — Cak)

where p,, (s) = N(s;0, R) = Wefés/ms is the pdf of the noise vg. So, (3.9) can be written
as follows:
p(e|uf 1y =0 plyklzr)p(@eld™ y* 1) = 0 N(yk — Cp; 0, Re)N (ze;my , Py). (3.10)

This is the product between two Gaussians, where the argument of the two exponentials sums and
gives (omitting the factor —1/2):

argBap = (xr —my ) (Py) ™ wx —my,) + (ye — Car) Ry (y — Cy,)
Omitting for simplicity the sub k£ and the superscript —, the previous equation can be written:
argBap = (x —m)' P~ Yz —m) + (y — Cz) R (y — Cx)
Expanding the products, we get:
argBxp = '(P7' + C'R7'C)x — 2(m' P~ + ¢/ R7IO)z + G (3.11)

where G is a quantity independent of x which can be subsumed in the normalization term 7 in (3.9).
To show that p(xy|u*~1, y¥) in (3.10) is a Gaussian density, we have to show that argFExp is a quadratic
form of z, i.e., that there exist a symmetric and positive definite matrix S and a vector a such that

(PP +C'RIC)e -2 P +y/R'C)z = (x —a)S (2 —a) + H (3.12)
where H, again, is some constant quantity independent of z. Expanding the products, we obtain:
(x—a)'S ™Yz —a)=2'S" e —2dS o +d S a (3.13)

Combining (3.12) and (3.13), we can conclude on the Gaussianity of p(xx|u*~!,¢*) if it is possible to
determine S and a (which will correspond respectively to Py and my) such that:

st = ply RO (3.14)
St = m'Pt+y'R7IC (3.15)

We exploit the following linear algebra result, where A, B, C' and D are matrices (with proper
dimensions) with A and C invertible:
(A+ BCD) ' =A'— A 'B(DA'B+C 1) 'DA™! (3.16)
Applying this formula to (3.14) we see that S exists and is given by:
S = (£j+ ¢ R ~!=pP—-PC'(CPC'+R)"'CP=[I - PC'(CPC' + R)"'C]P. (3.17)

)
<=~
A B C D

10



Francesco Martinelli CHAPTER 3. THE KALMAN FILTER

If S exists, also a is well defined and this concludes the proof that p(zj|u*~1,3*) is a Gaussian pdf.
About the computation of mj; = a and of P, = .5 we proceed as follows.
Reintroducing the sub k and the superscript — in (3.17) we obtain:

Py =[I—- P C'(CP C'+Ry) 'CO1P;
Defining the Kalman gain:
Ky =P, C'(CP;C"+ Ry)™ !, (3.18)

we finally have:

P, =1 - K,C\P, (3.19)
As for a (i.e. my), we have from (3.15):

S7la=C'Rly+P'm
ie.
a=S(C'R 'y+P 'm) = S[C'R"(Cm+y—Cm)+P'm] = S[C'R™'C + P~ m+SC'R™(y—Cm)
g1

=m+ L(y — Cm) (3.20)

where L = SC’R™!. Using the expression of S given in (3.17):
L=[I-PC'(CPC'+ R)"'C]PC'R™ = PC'R™' — PC'(CPC’' + R)"'CPC'R™!
= PC'[R™! — (CPC' + R)"'CPC'R™Y
Using again the formula reported in (3.16):
L=PC'R! — (CPC'"+R)"'CPC'R”!] = PC'(R+R(—CPC'R"'R+CPC'+R)"'CPC'R™'R)™*
[\;\B/( C+)\D,] (R+R( + +R) )
= PC'(R+ RR'CPC'R'R)™' = PC'(R+CPC")}

Reintroducing also here the sub k£ and the superscript —, we obtain:

L=P C'(Ry +CP C')"!

which is exactly the Kalman Gain (see (3.18))! So from (3.20), where a is the mean my, of p(zx|u*~t, y*)
and m = m,_, we finally have:

mg :m,;—l—Kk (yk—Cm,;), (3.21)

innovation

The term denoted as innovation in (3.21) plays a crucial role: it provides a correction to the predicted
value m, according to the difference between the actual measurement y; and the expected measure-
ment Cm,_ . The optimal weight to assign to the correction w.r.t. the predicted value m, is given by
the Kalman Gain. In conclusion, remembering that the estimation provided by the Kalman Filter is
the mean of the distributions, i.e. &, = m, and &} = my, the equations (3.7), (3.8), (3.18), (3.21)
and (3.19) define the Kalman Filter and are summarized for convenience in the following algorithm.

Algorithm 1 The Kalman Filter (KF)
Assume zg ~ N(mg, Py) and initialize the filter by &9 = mg. At each time k > 1 we have the
following recursive equations:

&y = A#p_1+ Buyy (3.22)
Py = AP A+ Qi (3.23)
K, = P, C'(CP;C"+Ry)™* (3.24)
T = &) + Ki(ye — Cmy) (3.25)
P, = [I-KyCP; (3.26)
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3.2 Observations

These observations are taken from the textbook “Dalla Mora, Germani, Manes: Introduzione alla
teoria dell’identificazione dei sistemi”.

e As mentioned, the Kalman filter provides the LSQ and the MAP estimation of the state at all
times k and also, through the covariance matrix, the quality of the estimates.

e The Kalman Gain, which involves the main burden of computations, can be computed off line,
being independent of the measurements.

e The Kalman filter is optimal at all times k if it starts with the correct estimate and the correct
covariance matrix. However, as discussed shortly below, under proper conditions, the KF is
asymptotically optimal under any initialization.

e Even if the system is stationary (i.e. A, B, C and D are constant and Ry = R, Qr = Q)
the KF is not stationary (K} remains time dependent). However, under proper conditions, the
covariance matrices P, and the Kalman gain Kj, converge to a steady state value P and K
and the (stationary) KF (i.e. the one which uses the stationary Kalman gain) is asymptotically
optimal.

Consider now a stationary system. Using (3.16), (3.23), (3.24) and (3.26), we have:

Pry1 = (I — Ki)(APA' + Q) = [\I/—(Apk{Jr Q)C' (C(AP A +VQ)C/ + R)fl\c/](APkA/ + Q)

A 5 e D

= [I + (APA + Q)C'(—C(APA' + Q)C' + C(APA' + Q)C' + R) (] “H(APA + Q)
— [I+ (APA' + Q)C'R™'C] ' (AP A" + Q)
Assuming P reaches a steady state value P, the previous equation becomes (at steady state):
P=[I+(APA +Q)C'R™'C] " (APA' 4+ Q) (3.27)

which is known as the Algebraic Riccati Equation (ARE).

Now, if the couple (A, C) is detectable, then, for any positive semidefinite Py, P, — P, which is a
finite positive semidefinite matrix solution to the ARE (3.27) (P is in general not unique and depends
on PQ)

Let P be a positive semidefinite matrix solution to the ARE (3.27). If (4, Q) is stabilizable, P is
the unique positive semidefinite solution to the ARE (3.27) and is such that the dynamic matrix of
the Kalman filter has all the eigenvalues with modulus less than one.

The following theorem summarizes these properties (see the cited text for its proof).

Theorem 2 If the couple (A, C) is detectable and the couple (A, Q) is stabilizable then:
1. 3! P > 0 solution of the ARE (8.27) which is such that:

lim P, = P for all P,

k—oo

2. The KF is stable, that is the dynamic matriz of the filter has all the eigenvalues with modulus
less than one (and so the filter is independent at steady state of the initial estimate I ).

3. The KF with the steady state Kalman Gain is asymptotically optimal.
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