
Chapter 1

Derivation of the EKF and of the UKF
from the affine LSQ estimator

In the case of non linear systems, p(xk|uk−1, yk−1) and p(xk|uk−1, yk) are no longer Gaussian and
several approaches can be used to approximate them, ranging from methods relying on a Gaussian
fitting of these pdf, like the EKF and the UKF (often called parametric methods1), to others (often
denoted as non parametric filters) like the Histogram filter (HF) or the Particle filter (PF). While the
first approaches only provide an approximation of the expected value of xk and of its covariance matrix,
HF and PF determine a numerical approximation of the complete pdf. Notice that the knowledge of
only the expected value and the covariance matrix can be misleading in some cases where, e.g. the pdf
is bimodal (see Fig. 1.1). However, the parametric approximations are usually much more efficient
from a computational point of view, and so it is of interest to derive them.

−10 0 10 20 30
−10

−5

0

5

10

15

20

25

30

x

y

Figure 1.1: Approximating a generic pdf p(x, y) with its mean and covariance is not always a good
choice, especially if the pdf is not unimodal (‘+’ = mean of the pdf, red ellipse = covariance, blue
dots = approximation of the pdf through a PF)

At this regard, let’s give a look to the steps necessary to obtain the optimal estimator in the
LSQ (Least SQuares) sense in this case. As we will see, we will simplify the problem by adopting in

1Actually, the EKF and the UKF do not make any explicit Gaussian assumption on the pdf but only offer a tool
to compute the mean and the covariance of the state of a system along its evolution. For simplicity, since mean and
covariance completely characterize a Gaussian pdf, we will say that these approaches perform a Gaussian fitting of the
true pdf.

1

Francesco Martinelli EKF and UKF from the affine LSQ estimator

the correction step an estimation affine in the measurements (while the LSQ estimator is in general
non linear). Under this restriction, it is possible to derive the recursive equations of the affine LSQ
estimator (which is an estimator which manipulates linearly the measurements).

The practical implementation of these equations can be accomplished in different ways: (i) using
a linearization of the non linearities, and we obtain the Extended Kalman Filter (EKF); (ii) using
a different approximation called the Unscented Transformation, and we get the Unscented Kalman
Filter (UKF).

In this section we will first derive the recursive equations of the affine LSQ estimator and then
present its two approximate implementations: the EKF and the UKF2.

1.1 The affine LSQ estimator for general systems

Consider a system

xk = f(xk−1, uk−1, wk−1)

yk = h(xk) + vk

where wk and vk are noise sequences, assumed w.l.o.g. 0 mean, and we have considered a simple
dependence of the measurement on the noise vk, being very common in practical settings. Let Qk and
Rk be the covariance matrices associated with wk and vk respectively and assume also independence
of these sequences as in the linear case: i.e. we have i.i.d. sequences, independent of each other and
independent of the initial state x0, assumed a random variable with expected value m0 and covariance
matrix P0 (the Gaussianity of the noises and of the initial state however is no longer required here).

Let x ∈ ℜn and y ∈ ℜq. Then the affine LSQ estimator is the following recursive filter (initialized
with x̂0 = m0 and P0 = E[(x0 − m0)(x0 − m0)

′]):

prediction : x̂−
k = E[f(xk−1, uk−1, wk−1)] (1.1)

P−
k = E[(xk − x̂−

k)(xk − x̂−
k)′] (1.2)

correction : x̂k = x̂−
k + Σxy,kΣ

−1
y,k(yk − E[h(xk)]) (1.3)

Pk = P−
k − Σxy,kΣ

−1
y,kΣyx,k (1.4)

where Σy,k = E[(yk − E[yk])(yk − E[yk])
′] and Σ′

yx,k = Σxy,k = E[(xk − E[xk])(yk − E[yk])
′], and all

the expectations are taken w.r.t. the random variables in the arguments, with yk = h(xk) + vk (see
below for more details).

1.1.1 The prediction step

We now derive the equations (1.1)-(1.2) of the Prediction step. To have a LSQ estimator, we must
take:

x̂−
k = arg min

ξ
E[(ξ − xk)

′(ξ − xk)] = arg min
ξ

E[(ξ − f(xk−1, uk−1, wk−1))
′(ξ − f(xk−1, uk−1, wk−1))],

where the expectation is taken w.r.t. the independent random variables xk−1 and wk−1 (i.e. according
to the pdf p(xk−1|uk−2, yk−1) of xk−1 and to p(wk−1)). We have already shown that the solution of
the previous equation is ξ = E[f(xk−1, uk−1, wk−1)]. In fact, let for brevity f = f(xk−1, uk−1, wk−1).
Then, any other ξ = E[f] + g, where g is a deterministic vector (function of uk−1 and of yk−1), would
give

E[(ξ − f)′(ξ − f)] = E[(f − E[f])′(f − E[f])] + g′g

2It is worth mentioning that in the case of linear systems with non Gaussian noises, the Kalman Filter remains
optimal in the LSQ sense among affine estimators: its equations in fact result from the application of the LSQ estimator
presented in Section 1.1 to the linear case. This will be also mentioned at the beginning of Section 1.2.

2

Francesco Martinelli EKF and UKF from the affine LSQ estimator

which is minimized by g = 0 (E[(f −E[f])′(f −E[f])] is a quantity which only depends on the process
and can not be influenced by the choice of x̂). So, we have:

x̂−
k = E[f(xk−1, uk−1, wk−1)]

The covariance matrix is then given by:

P−
k = E[(x − x̂−

k)(x − x̂−
k)′] = E[(f − E[f])(f − E[f])′].

1.1.2 The correction step

Before deriving the equations of the correction step of the affine LSQ estimator, let’s consider the case
we have a random vector x, with pdf p(x), mean mx and covariance matrix Px. Assume we are given
a measurement y = h(x) + v of x, where v is a 0-mean noise, independent of x.

We know that the optimal estimation in the LSQ sense of x given y is x̄y = E[x|y]. Usually it
is not possible to derive a closed form expression for this quantity and so we only look for an affine
estimator x̂ = Ay + b, for some optimal A and b. So we look for an estimator:

x̂ = A∗y + b∗

where A∗ ∈ ℜn×q and b∗ ∈ ℜn are the values of A and b minimizing:

JLSQ = E[(x − x̂)′(x − x̂)] = E[tr{(x − x̂)(x − x̂)′}] = tr{E[(x − x̂)(x − x̂)′]}

= tr{E[(x − Ay − b)(x − Ay − b)′]} (1.5)

The expectation is taken w.r.t. the random variables x and v (v is the noise in the measurement).
In fact, since we are assuming that it is too difficult to compute the expectation of x given y, we
determine A and b which minimize the expected square error w.r.t. all possible y that may occur.
This may be expressed in closed form and corresponds to take the expectation w.r.t. all possible x
and v (being y = h(x) + v). Notice that if the LSQ estimator was really affine, i.e. if it was

x̄y = E[x|y] =

∫

xp(x|y)dx = Ay + b

for all y, then our procedure would determine the correct A∗ and b∗. In fact, in that case, the optimal
Ay and by

[Ay, by] = arg min
A,b

JLSQ,y = arg min
A,b

E[(x − Ay − b)′(x − Ay − b)|y] ≡ [A∗, b∗]

would be always the same for all y. Now, if we are given a parameterized function gy(r), such that
arg minr gy(r) = r̄ is the same for all y, clearly also arg minr

∫
gy(r)p(y)dy = r̄ for any (non negative)

weighting function p(y). For this reason, in the case the LSQ estimator of x given y is really affine,
A∗ and b∗ can also be computed as the values of A and b minimizing

JLSQ = E[JLSQ,y] =

∫

JLSQ,yp(y)dy =

∫

E[(x − Ay − b)′(x − Ay − b)|y]p(y)dy

=

∫ ∫

(x − Ay − b)′(x − Ay − b)p(x|y)p(y)dxdy =

∫ ∫

(x − Ay − b)′(x − Ay − b)p(y|x)p(x)dydx

=

∫ ∫

(x − Ay − b)′(x − Ay − b)pv(y − h(x))p(x)dydx

=

∫ ∫

(x − A(h(x) + v) − b)′(x − A(h(x) + v) − b)pv(v)p(x)dxdv

3

Francesco Martinelli EKF and UKF from the affine LSQ estimator

This fact, together with the possibility of obtaining a closed form expression for the estimator, mo-
tivates the choice of selecting A and b in order to minimize the expected (square) difference between
x and x̂ = Ay + b taking the expectation w.r.t. the random variables x and v, i.e. before knowing
the value of y. If the LSQ estimator is not affine, this choice is clearly an approximation, which
corresponds to select A and b providing the best LSQ behavior in the average w.r.t. all the y that can
be observed. So, from (1.5):

[A∗, b∗] = arg min
A,b

JLSQ = arg min
A,b

tr{E[(x − Ay − b)(x − Ay − b)′]}

= arg min
A,b

tr{−E[xy′]A′ − E[x]b′ − AE[yx′] + AE[yy′]A′ + AE[y]b′ − bE[x]′ + bE[y]′A′ + bb′}

where all the expectations are taken, as mentioned, w.r.t. x and v. By introducing the notation
mx = E[x], my = E[y] = E[h(x) + v] and observing that E[yy′] = Σy + mym

′
y (since Σy = E[(y −

my)(y − my)
′] = E[yy′] − mym

′
y), and similarly E[xy′] = Σxy + mxm′

y, we have:

[A∗, b∗] = arg min
A,b

JLSQ =

= arg min
A,b

tr{−(Σxy+mxm′
y)A

′−mxb′−A(Σyx+mym
′
x)+A(Σy+mym

′
y)A

′+Amyb
′−bm′

x+bm′
yA

′+bb′}

The covariance matrices Σy and Σxy do not depend on the estimator but are intrinsic to the process.
In fact Σy = E[(y − E[h(x)])(y − E[h(x)])′] only depends on p(x) and on the noise v (the same holds
for Σxy).

Taking the derivatives w.r.t. A and b we get3:

∂JLSQ

∂b
= −2m′

x + 2m′
yA

′ + 2b′ (1.6)

∂JLSQ

∂A
= −2(Σyx + mym

′
x) + 2(Σy + mym

′
y)A

′ + 2myb
′ (1.7)

Putting them at 0 we get:

−m′
x + m′

yA
′ + b′ = 0

−(Σyx + mym
′
x) + (Σy + mym

′
y)A

′ + myb
′ = 0

From equation (1.6):
b′ = m′

x − m′
yA

′

which, substituted in (1.7), gives:

−(Σyx + mym
′
x) + (Σy + mym

′
y)A

′ + my(m
′
x − m′

yA
′) = −Σyx + ΣyA

′ = 0

i.e.
A′ = Σ−1

y Σyx

which finally gives:

A∗ = ΣxyΣ
−1
y

b∗ = mx − A∗my

3The way to compute the derivative of the trace of a matrix with respect to vectors and matrices is not straightforward:
try first with a scalar case to get familiarity with the given equations. For the multi-dimensional case, we proceed as
follows. First, we use as derivative of a scalar function φ w.r.t. a vector the usual gradient of φ, while, in a similar
way, the derivative of φ w.r.t. a matrix A is a matrix which element (i, j) is the derivative of φ w.r.t. Aji. Using this
definition it is possible to see that the derivative of tr{AB} w.r.t. B is A. In fact, assume A is n× q and B is q×n, as it
occurs in our derivations. Then φ = trace{AB} =

∑n

i=1

∑q

j=1
AijBji with ∂φ

∂Bij
= Aji. So, defining the derivative w.r.t.

a matrix as mentioned above, we get the assessed property ∂φ

∂B
= A. Finally, if a is a vector and we consider φ = tr{aa′}

we have: φ =
∑n

i=1
a2

i with the gradient of φ given in fact by ∂φ

∂a
= 2a′. Similarly, if φ = tr(ab′), ∂φ

∂a
= b′.

4

Francesco Martinelli EKF and UKF from the affine LSQ estimator

with the optimal affine LSQ estimator given by:

x̂ = A∗y + b∗ = A∗y + mx − A∗my = mx + A∗(y − my) = mx + ΣxyΣ
−1
y (y − my)

The covariance is given by:

P = E[(x − x̂)(x − x̂)′] = E[(x − mx − ΣxyΣ
−1
y (y − my))(x − mx − ΣxyΣ

−1
y (y − my))

′]

= E[(x − mx)(x − mx)′] − E[(x − mx)(y − my)
′]Σ−1

y Σyx − ΣxyΣ
−1
y E[(y − my)(x − mx)′]

+ΣxyΣ
−1
y E[(y − my)(y − my)

′]Σ−1
y Σyx = Px − ΣxyΣ

−1
y Σyx

So, coming back to the notation of the filter and observing that mx = E[f(xk−1, uk−1, wk−1)] = x̂−
k

(i.e. the expected value of xk before taking the measurement yk), and my = E[yk] = E[h(xk) + vk] =
E[h(xk)] (being E[vk] = 0) and Px = P−

k , we have:

x̂k = x̂−
k + Σxy,kΣ

−1
y,k(yk − E[h(xk)]) (1.8)

and
Pk = P−

k − Σxy,kΣ
−1
y,kΣyx,k (1.9)

where Σy,k = E[(yk − E[yk])(yk − E[yk])
′] and Σ′

yx,k = Σxy,k = E[(xk − E[xk])(yk − E[yk])
′], and all

the expectations are taken w.r.t. the random variables xk|yk−1, uk−1 (i.e. using the pdf of xk before
integrating the last measurement yk) and the noise vk.

1.2 Implementation through linearization: the Extended Kalman

Filter (EKF)

If the dynamic function f and the measurement function h are linear, the equations (1.1)-(1.4) of
the optimal affine LSQ estimator result in the equations of the KF. Remember however that in the
linear case, if the noise is also Gaussian, the KF is optimal in the LSQ sense not only among linear
estimators but among all estimators (and is actually the exact solution to the filtering problem, as
mentioned previously).

In the non linear case, a first possibility to provide an approximate implementation of the equations
(1.1)-(1.4) of the optimal affine LSQ estimator is based on a linearization of f and h around the
estimates. This is the EKF.

1.2.1 Prediction step of the EKF

We report here for convenience the equations (1.1)-(1.2) of the prediction step of the optimal affine
LSQ estimator:

x̂−
k = E[f(xk−1, uk−1, wk−1)] (1.10)

P−
k = E[(xk − x̂−

k)(xk − x̂−
k)′] (1.11)

and introduce the linearization of f . So we can write

f(xk−1, uk−1, wk−1) ≈ f(x̂k−1, uk−1, 0) +
∂f

∂x

∣
∣
∣
∣
(x̂k−1,uk−1,0)

(xk−1 − x̂k−1)

+
∂f

∂w

∣
∣
∣
∣
(x̂k−1,uk−1,0)

wk−1 (1.12)

5

Francesco Martinelli EKF and UKF from the affine LSQ estimator

having neglected higher order terms. Substituting this linear approximation in (1.10) gives:

E[f(xk−1, uk−1, wk−1)] ≈ f(x̂k−1, uk−1, 0) +
∂f

∂x

∣
∣
∣
∣
(x̂k−1,uk−1,0)

E[xk−1 − x̂k−1]

+
∂f

∂w

∣
∣
∣
∣
(x̂k−1,uk−1,0)

E[wk−1] ≈ f(x̂k−1, uk−1, 0)

being x̂k−1 ≈ E[xk−1] in the limit of the linear approximation adopted4 and E[wk−1] = 0. So we take:

x̂−
k = f(x̂k−1, uk−1, 0).

Then, substituting this linear approximation in (1.11) gives:

E[(xk − x̂−
k)(xk − x̂−

k)′]

= E
[
[f(xk−1, uk−1, wk−1) − f(x̂k−1, uk−1, 0)][f(xk−1, uk−1, wk−1) − f(x̂k−1, uk−1, 0)]

′
]

Substituting the expression of the linearized f given in (1.12), simplifying and adopting the positions:

Fx,k−1 =
∂f

∂x

∣
∣
∣
∣
(x̂k−1,uk−1,0)

Fw,k−1 =
∂f

∂w

∣
∣
∣
∣
(x̂k−1,uk−1,0)

,

we obtain:
E[(xk − x̂−

k)(xk − x̂−
k)′]

≈ E
[
(Fx,k−1(xk−1 − x̂k−1) + Fw,k−1wk−1) (Fx,k−1(xk−1 − x̂k−1) + Fw,k−1wk−1)

′
]
,

which, exploiting the independence of wk−1 from previous noises and the noise on x0, becomes:

E[(xk − x̂−
k)(xk − x̂−

k)′] ≈ Fx,k−1E[(xk−1 − x̂k−1)(xk−1 − x̂k−1)
′]F ′

x,k−1 + Fw,k−1E[wk−1w
′
k−1]F

′
w,k−1

≈ Fx,k−1Pk−1F
′
x,k−1 + Fw,k−1Qk−1F

′
w,k−1.

So also in this case we take the approximate expression

P−
k = Fx,k−1Pk−1F

′
x,k−1 + Fw,k−1Qk−1F

′
w,k−1

To conclude, the prediction step of the EKF is given by:

x̂−
k = f(x̂k−1, uk−1, 0) (1.13)

P−
k = Fx,k−1Pk−1F

′
x,k−1 + Fw,k−1Qk−1F

′
w,k−1 (1.14)

Notice how these expressions look very similar to the ones in the prediction step of the KF, if the
matrices A and Bw = I are replaced by the Jacobians of f .

4Actually, already at the first step, even if x̂0 is exactly taken as the expected value E[x0], the position x̂−

1 =
f(x̂0, u0, 0) = f(E[x0], u0, 0) is different from the true expected value E[f(x0, u0, w0)] being coincident only if we neglect
higher order terms in the Taylor expansion of f(x0, u0, w0). Another source of error is the fact we are considering only
an affine LSQ estimator rather than a true LSQ estimator.

6

Francesco Martinelli EKF and UKF from the affine LSQ estimator

1.2.2 Correction step of the EKF

We report here for convenience the equations (1.3)-(1.4) of the correction step of the optimal affine
LSQ estimator:

x̂k = x̂−
k + Σxy,kΣ

−1
y,k(yk − E[h(xk)]) (1.15)

Pk = P−
k − Σxy,kΣ

−1
y,kΣyx,k (1.16)

Now we introduce the linearization of h:

h(xk) ≈ h(x̂−
k) +

∂h

∂x

∣
∣
∣
∣
x̂−

k

(xk − x̂−
k) (1.17)

Using this expression, and introducing the position

Hx,k =
∂h

∂x

∣
∣
∣
∣
x̂−

k

we get
E[yk] = E[h(xk)] ≈ h(x̂−

k)

being x̂−
k ≈ E[xk] (see e.g. (1.10) where f(xk−1, uk−1, wk−1) is actually xk).

Then we have:

Σy,k = E[(yk − E[yk])(yk − E[yk])
′] = E[(h(xk) + vk − E[yk])(h(xk) + vk − E[yk])

′]

which, exploiting the linearization of h in (1.17) and the independence of vk from previous noises and
from wk becomes:

Σy,k ≈ E[(Hx,k(xk − x̂−
k) + vk)(Hx,k(xk − x̂−

k) + vk)
′] ≈ Hx,kE[(xk − x̂−

k)(xk − x̂−
k)′]H ′

x,k

+E[vkv
′
k] ≈ Hx,kP

−
k H ′

x,k + Rk

Similarly,

Σxy,k = E[(xk − E[xk])(yk − E[yk])
′] ≈ E[(xk − x̂−

k)(Hx,k(xk − x̂−
k) + vk)

′]

= E[(xk − x̂−
k)(xk − x̂−

k)′]H ′
x,k ≈ P−

k H ′
x,k

Substituting all these expressions in (1.15)-(1.16) gives:

x̂k = x̂−
k + P−

k H ′
x,k(Hx,kP

−
k H ′

x,k + Rk)
−1(yk − h(x̂−

k))

Pk = P−
k − P−

k H ′
x,k(Hx,kP

−
k H ′

x,k + Rk)
−1Hx,kP

−
k .

Introducing the Kalman Gain Kk = P−
k H ′

x,k(Hx,kP
−
k H ′

x,k + Rk)
−1 we have for the covariance matrix:

Pk = P−
k − KkHx,kP

−
k = (I − KkHx,k)P

−
k .

In conclusion the correction step of the EKF is given by:

x̂k = x̂−
k + Kk(yk − h(x̂−

k)) (1.18)

Pk = (I − KkHx,k)P
−
k (1.19)

Kk = P−
k H ′

x,k(Hx,kP
−
k H ′

x,k + Rk)
−1 (1.20)

Notice again how these expressions look very similar to the ones in the correction step of the KF, if
the matrix C is replaced by the Jacobian of h.

The following algorithm summarizes all the steps of the EKF.

7

Francesco Martinelli EKF and UKF from the affine LSQ estimator

Algorithm 1 Extended Kalman Filter (EKF)
Assume x0 is a random vector with mean m0 and covariance matrix P0 and initialize the filter by

x̂0 = m0. At each time k ≥ 1 we have the following recursive equations:

Prediction : x̂−
k = f(x̂k−1, uk−1, 0)

P−
k = Fx,k−1Pk−1F

′
x,k−1 + Fw,k−1Qk−1F

′
w,k−1

Correction : x̂k = x̂−
k + Kk(yk − h(x̂−

k))

Pk = (I − KkHx,k)P
−
k

Kk = P−
k H ′

x,k(Hx,kP
−
k H ′

x,k + Rk)
−1

where

Fx,k−1 =
∂f

∂x

∣
∣
∣
∣
(x̂k−1,uk−1,0)

Fw,k−1 =
∂f

∂w

∣
∣
∣
∣
(x̂k−1,uk−1,0)

Hx,k =
∂h

∂x

∣
∣
∣
∣
x̂−

k

.

1.3 Implementation through Unscented Transformation: the Un-

scented Kalman Filter (UKF)

Another way to provide an approximate implementation of the optimal affine LSQ estimator (1.1)-
(1.4) is based on the Unscented Transformation (UT), a trick to propagate mean and covariance of
random variables (or vectors) through non linear transformations.

1.3.1 The Unscented Transformation

Given a random vector x with mean mx and covariance matrix Px, consider the random vector
y = f(x). We know that if f is linear (i.e. y = Ax), the expected value my = E[y] = E[f(x)] of y
and its covariance matrix Py = E[(y−my)(y−m′

y)] are simply given by my = Amx and Py = APxA′.
In addition, if x is a Gaussian random vector, also y remains a Gaussian random vector. If f is non
linear, it is not straightforward in general to compute my and Py, since y has a generic pdf p(y) even
if x is Gaussian. To determine an approximation of my and of the covariance matrix Py (actually, as
mentioned, this corresponds to find a Gaussian pdf p̂(y) fitting the true pdf p(y) of y) it is possible to
proceed as illustrated in the EKF section, by taking my ≈ f(mx) and Py ≈ FPxF ′, where F = df/dx
is the Jacobian of f w.r.t. x (this corresponds to linearize the non linear f around mx).

A smarter approach is based on the Unscented Transformation, consisting of the following proce-
dure.

Algorithm 2 The Unscented Transformation (UT)

• Let x be an n dimensional random vector with mean mx and covariance matrix Px. Based on mx

and Px, compute a set of 2n + 1 Sigma points ξi and corresponding weights Wi (see Algorithm
3 below), such that

2n+1∑

i=1

Wi = 1
2n+1∑

i=1

Wiξi = mx

2n+1∑

i=1

Wi(ξi − mx)(ξi − mx)
′ = Px. (1.21)

• Determine the transformation Yi = f(ξi) of each Sigma Point ξi, i = 1, 2, . . . , 2n + 1.

• The approximate mean and covariance of y = f(x) are then computed by:

m̂y ≈
2n+1∑

i=1

WiYi

P̂y ≈
2n+1∑

i=1

Wi(Yi − m̂y)(Yi − m̂y)
′

8

Francesco Martinelli EKF and UKF from the affine LSQ estimator

This usually provides a much better approximation of the mean and of the covariance of y = f(x)
w.r.t. the approximation based on Jacobians5. The selection of the Sigma Points (the first step in
Algorithm 2) can be performed by considering a symmetric set of values, as in the following algorithm.

Algorithm 3 Sigma Points generation: [W,Ξ] = {Wi, ξi}i=1,...,2n+1 = SigmaPoints(mx, Px)
Let x be an n dimensional random vector with mean mx and covariance matrix Px. Let K ∈ ℜ be

an arbitrary quantity such that K + n > 0. Then set:

ξ2n+1 = mx W2n+1 =
K

n + K
ξi = mx +

√
n + K L′

i Wi =
1

2(n + K)
i = 1, . . . , n

ξi+n = mx −
√

n + K L′
i Wi+n =

1

2(n + K)
i = 1, . . . , n

where Li = (P
1/2
x)i is the i-th row of the square root of the matrix Px, in the sense that L′L = Px (in

MATLAB, L = chol(Px) is the Choleski decomposition of Px and is an efficient procedure to compute
L such that L′L = Px).

It is easy to verify that the set of vectors and weights derived in Algorithm 3 meets all the conditions
in (1.21). The quantity K is a degree of freedom which can be used to improve the quality of the
approximation: in our applications to mobile robot localization where n = 3 we have always selected
K = 0.

1.3.2 The Unscented Kalman Filter

Using the UT, it is quite straightforward to implement the optimal affine LSQ estimator (1.1)-(1.4).
Let’s start with the prediction step and report for convenience the equations (1.1)-(1.2) of the

optimal affine LSQ estimator:

x̂−
k = E[f(xk−1, uk−1, wk−1)] (1.22)

P−
k = E[(xk − x̂−

k)(xk − x̂−
k)′] (1.23)

As in the EKF case, we have (in the limit of the approximation adopted) that x̂k−1 = E[xk−1] and,
consequently, E[(xk−1 − E[xk−1])(xk−1 − E[xk−1])

′] = E[(xk−1 − x̂k−1)(xk−1 − x̂k−1)
′] = Pk−1.

To compute E[f(xk−1, uk−1, wk−1)] using the UT we apply the following procedure. We define an
extended state xa,k−1 comprising the previous state xk−1 and the noise wk−1, with dimension na. In
view of the independence of xk−1 and wk−1 this extended state xa,k−1 is a random vector with a mean
x̂a,k−1 and a block diagonal covariance matrix Pa,k−1 given by:

x̂a,k−1 =

[
x̂k−1

0

]

Pa,k−1 =

[
Pk−1 0

0 Qk−1

]

According to xa = [x′, w′]′, define also the following function:

fa(xa, u) = f(x, u,w)

The approximate determination of x̂−
k = E[f(xk−1, uk−1, wk−1)] = E[fa(xa,k−1, uk−1)] can then been

performed using the UT:

5It is possible to show that the unscented transformation calculates the mean and the covariance correctly to the
second order while the linearized approach only considers a first order approximation

9

Francesco Martinelli EKF and UKF from the affine LSQ estimator

• Compute the set of 2na+1 Sigma Points applying the procedure in Algorithm 3 with mx = x̂a,k−1

and Px = Pa,k−1:
[W,Ξk−1] = sigmaPoints(x̂a,k−1, Pa,k−1);

• For each Sigma Point ξj,k−1, j = 1, . . . , 2na + 1, apply the dynamics:

ξ−j,k = fa[ξj,k−1, uk−1]

• Get the a priori estimate and its covariance matrix:

x̂−
k =

2na+1∑

j=1

Wjξ
−
j,k

P−
k =

2na+1∑

j=1

Wj(ξ
−
j,k − x̂−

k)(ξ−j,k − x̂−
k)′

As for the correction step, we have to implement (1.3)-(1.4) reported here for convenience:

x̂k = x̂−
k + Σxy,kΣ

−1
y,k(yk − E[h(xk)]) (1.24)

Pk = P−
k − Σxy,kΣ

−1
y,kΣyx,k (1.25)

This requires the (approximate) determination of E[h(xk)], Σy,k and Σxy,k. Now, xk, based on the
prediction step, is characterized (approximately) by a mean x̂−

k and a covariance matrix P−
k : the

vectors ξ−j,k are actually the Sigma Points of this distribution, with weights Wj . So, according to the
UT, if we introduce the notation

Yj,k = h(ξ−j,k)

y−k =

2na+1∑

j=1

WjYj,k,

we have the following approximate expressions:

E[h(xk)] ≈ y−k

Σy,k ≈ E[(yk − y−k)(yk − y−k)′] ≈
2na+1∑

j=1

Wj(Yj,k − y−k)(Yj,k − y−k)′ + Rk

Σxy,k ≈
2na+1∑

j=1

Wj(ξ
−
j,k − x̂−

k)(Yj,k − y−k)′

The reason for the presence of Rk in the expression of Σy,k is the fact that yk = h(xk)+ vk. So, taking
into account that E[h(xk)] = y−k we have:

Σy,k ≈ E[(yk − y−k)(yk − y−k)′] ≈ E[(h(xk) + vk − E[h(xk)])(h(xk) + vk − E[h(xk)])′]

≈ E[(h(xk) − E[h(xk)])(h(xk) − E[h(xk)])′]
︸ ︷︷ ︸

∑2na+1

j=1
Wj(Yj,k−y−

k
)(Yj,k−y−

k
)′

+ E[vkv
′
k]

︸ ︷︷ ︸

Rk

The quantities just determined must be substituted in (1.24)-(1.25) to get the correction step of the
UKF. The complete UKF is sketched in the following algorithm.

10

Francesco Martinelli EKF and UKF from the affine LSQ estimator

Algorithm 4 The Unscented Kalman Filter (UKF)

Assume x0 is a random vector with mean m0 and covariance matrix P0 and initialize the filter
by x̂0 = m0. At each time k ≥ 1 we have the following recursive equations:

• Define the na dimensional vector and the na × na matrix:

x̂a,k−1 =

[
x̂k−1

0

]

Pa,k−1 =

[
Pk−1 0

0 Qk−1

]

• Compute the set of 2na + 1 Sigma Points (see Algorithm 3):

[W,Ξk−1] = sigmaPoints(x̂a,k−1, Pa,k−1);

• For each Sigma Point ξj,k−1, j = 1, . . . , 2na + 1, apply the dynamics:

ξ−j,k = fa[ξj,k−1, uk−1]

where fa(xa, u) = f(x, u,w).

• (PREDICTION) Get the a priori estimate and its covariance matrix:

x̂−
k =

2na+1∑

j=1

Wjξ
−
j,k

P−
k =

2na+1∑

j=1

Wj(ξ
−
j,k − x̂−

k)(ξ−j,k − x̂−
k)′

• For each transformed Sigma Point ξ−j,k, j = 1, . . . , 2na + 1, compute the measurement vector:

Yj,k = h(ξ−j,k)

• Then, the a priori expected measurement vector is:

y−k =

2na+1∑

j=1

WjYj,k

• Compute the covariance matrices:

Py =

2na+1∑

j=1

Wj(Yj,k − ŷ−k)(Yj,k − ŷ−k)′ + Rk

Pxy =

2na+1∑

j=1

Wj(ξ
−
j,k − x̂−

k)(Yj,k − ŷ−k)′

• Compute the Kalman gain:
Kk = PxyP

−1
y

• (CORRECTION) Compute the estimate and update the covariance matrix

x̂k = x̂−
k + Kk

(
yk − ŷ−k

)

Pk = P−
k − KkPyK

′
k

11

