
Università degli Studi di Roma
”Tor Vergata”

Facoltà di Ingegneria
Corso di laurea in Ing. Informatica

Relazione finale
Creazione e animazione interattiva

di grafica tridimensionale

Relatore

Francesco Martinelli

Candidato

Michele Martone

Anno accademico 2003/2004

last revision 2004.11.05, in LATEX

2

Contents

I Overview 8

1 Introduction 9

2 Thesis Objectives Overview 12

3 Thesis Objectives Detail 14
3.1 Terrain representation . 14

3.1.1 Terrain representation in UGP 14
3.2 Remote controlled manipulator visualization 15

3.2.1 Manipulator visualization in UGP 16
3.3 Digital imaging and computer graphics in medical environments 16

3.3.1 A needle-like object penetrating a soft tissue in UGP . . 18

II Theoretical foundations 20

4 Two dimensional graphics 21
4.1 Computer colour and light . 21

4.1.1 Colour spaces . 22
4.1.2 RGB colour space . 22

4.2 Transformations and notation . 23
4.3 Punctual transformations . 24

4.3.1 Desaturation . 24
4.3.2 Negative . 24
4.3.3 Saturation . 24
4.3.4 Brightness and Vividness 25
4.3.5 Whiteness . 25
4.3.6 Blackness . 25

4.4 Non Punctual transformations 26
4.4.1 Blur and matrix convolutions 26
4.4.2 Contrast . 28
4.4.3 Despeckle . 29
4.4.4 Sharpening . 30

4.5 Resizing (resampling) . 31
4.5.1 Resizing - Upsampling . 31
4.5.2 Resizing - Downsampling 32

3

5 Three dimensional graphics 33
5.1 Points, planes, and straight lines 33

5.1.1 Containment of points in polygons 34
5.1.2 Ray - polygon intersection 35
5.1.3 Back and front polygons 35

5.2 Meshes . 36
5.2.1 Hull properties . 36
5.2.2 Some properties of triangle meshes 37
5.2.3 Convexity . 38
5.2.4 The implemented data structure 39

III Software architecture 41

6 Introduction 42
6.1 Programming style . 42
6.2 UGP components . 43

6.2.1 UGP components by dissection 43
6.2.2 Minor components and accessory classes 44
6.2.3 The components and libraries 45

6.3 Code documentation . 45

7 Engine and control 47
7.1 The base engine class and inheritance 47
7.2 The derived class SDLengine . 47

7.2.1 OpenGL initialization . 48
7.2.2 Input handling . 48

7.3 The command console and control 49

8 The rendering process 51
8.1 Camera . 51

8.1.1 The camera and the viewing system 51
8.1.2 World to view space transformation 52
8.1.3 Perspective transformations and 3D screen space 53
8.1.4 Transformations and OpenGL 54
8.1.5 Two camera classes . 54
8.1.6 Communication with the engine 55

8.2 2D Drawer . 56
8.2.1 Text drawing . 57

8.3 3D Drawer and geometry drawing 58
8.3.1 OpenGL initialization and portability 58
8.3.2 Setting up OpenGL state 58
8.3.3 OpenGL drawing commands 59

9 Entities 61
9.1 Dez3DEntity, a common base class for entities 61

9.1.1 Entity flags . 61
9.1.2 Entity geometry and text drawing 62
9.1.3 Entity update and input 62

9.2 Some examples with pictures . 62

4

9.2.1 Menger sponge . 63
9.2.2 Bouncing sphere . 63
9.2.3 Shootable . 64
9.2.4 Tissue . 64
9.2.5 The robot arm . 65
9.2.6 2D Image Displayer . 66

10 MeshCreator class as a shape factory 69
10.1 A primitive shape creator . 69
10.2 The MeshCreator command string 69

11 UGP usage 71
11.1 Mode switching commands . 71
11.2 Normal mode commands . 71
11.3 Console mode commands . 72

5

List of Figures

1.1 A screenshot of UGP. 9
1.2 Western Australia University Telelabs Project. 10

2.1 UGP in terrain exploration mode, in wireframe. 13

3.1 UGP in terrain exploration mode, textured. 15
3.2 Screenshot of UGP with the controlled manipulator. 17
3.3 UGP simulating an elastic, breakable tissue. 19

4.1 Wassily Kandinsky : Improvisation 21a. 1911. Oil on canvas,
96x105 cm. Muenchen, Staedtische Galerie in Lenbach, Germany. 21

4.2 A colour construction showing the colour cube in RGB space. . 23
4.3 Negative. 25
4.4 Whiteness. 26
4.5 Blackness. 27
4.6 The Tartaglia-Pascal triangle. 28
4.7 Normalized binomial coefficient values for the correspondent

kernel. 29
4.8 Contrast. 30

5.1 A point belonging to a triangle. 34
5.2 Triangle orientation. 36
5.3 Incorrectly (a), and correctly (b) ordered edges. 37
5.4 An edge. 37
5.5 A triangle. 37
5.6 A triangle enclosed by three edges. 38
5.7 Edges sharing in adjacent triangles. 38
5.8 A tetrahedron with split faces. 39
5.9 A convex and a non convex mesh. 39
5.10 An example of mesh representation. 40

6.1 The main component classes of UGP. 43
6.2 Accessory classes. 44

8.1 World and view coordinate systems. 52
8.2 The view frustum enclosed by the far and view plane. 53
8.3 Spherical coordinate system. 55
8.4 OpenGL API hierarchy in Unix and Windows (from www.sgi.com). 58

6

9.1 DezMenger objects, representing Menger sponges of order 1,2,3,
and through the axial ’hole’ of an order 1 one. 63

9.2 A bouncing ball. 64
9.3 A DezShootable class object : to be selected, selected, hit, missed. 65
9.4 Our sample image and its histogram. 66
9.5 Blur and edge revealing operations. 67
9.6 Resizing of images in UGP. 67
9.7 Contrast enhancing and the concatenation of partial desatura-

tion,contrast and saturation. 67
9.8 The sample image after box pixelating and negative effects. . . . 68

10.1 Structure of pointer interconnections for a tetrahedron. 69

7

Part I

Overview

8

Chapter 1

Introduction

Figure 1.1: A screenshot of UGP.

As electronics miniaturization progress proceeds, the increased capabilities
of computing machines give opportunity to new application fields. One of these
is the vast field of activities related to computer graphics. Computer graphics
is concerned with creation, description (internal representation), manipulation
and visualization of graphical objects. Usually each of these activities is per-
formed using a different software tool.

Creation is the process of describing graphical objects using a GUI or a script
language, and produces some structured data which usually is permanently
storable.

A description of the graphical object is needed to let the programs loading it
into memory and perform some further editing and/or visualization. Different

9

Figure 1.2: Western Australia University Telelabs Project.

representations are possible for the same object, and many have evolved to
suite certain needs.

For example, while an implicit description of an object (imagine, for a sphere:{
p | p ∈ R3, ‖p − C‖ = R, f or some R ∈ R,C ∈ R3

}
) is usually elegant and

easily readable to us, it may not be the best for a quick on-screen rendering,
since the system should be able to compute and visualize all points in P (an
infinite cardinality set) in a reasonable amount of time.

An explicit representation of the object, on the other hand, could be hard
to understand for the user (an example of explicit representation could be an
enumeration of facets of a polyhedron), but easier to handle by the system. The
need of a trade-off between ease of representation and computation (or even
other parameters) arises.

In fact, among the existing file formats, there is a clear differentiation be-
tween those oriented towards visualization and those oriented towards editing,
or even those oriented towards elegant representation. Manipulation too is af-
fected by the internal representation on graphical objects. Imagine a shape
represented by a big number of polygonal facets in an interactive editing pro-
gram: without a coexistent, easier to manipulate alternative representation, in
order to expand the object the user should select all of them, and drag them
one by one.

A smart facility here would be a structure holding logical information about
the polyhedron (with its constraints, like regularity, convexity, etc...).

In practice, the aforementioned trade-off is reached with redundancy in the
representation. Redundant structures hold more information than necessary,
usually providing facilities to certain operations. Once the graphical objects are
ready, they can be drawn on-screen in the final application context (visualiza-

10

tion). Depending on the chosen representation, the visualization could or could
not require further computation to be performed on the stored data.

Normally, the more suitable choice is made with reference to the context. For
example, in a visual editing program, the computation speed will be sacrificed
for the ease of interactive manipulation. Instead, in an interactive virtual reality
tool, usually all the focus will be put on the rendering speed, and possibly to
the ease of certain fixed operations (collisions or certain actions, like opening
of doors).

In the second example the needs are mixed, and often a part of the graphical
’world’ is stored ’statically’ (no interactions possible), and another could be
marked as ’dynamic’ (physical or logical interactions possible, like holding,
moving, deformations).

This leads to differentiated internal representation, and thus increased im-
plementation complexity.

In facts, computer graphics is a relatively new field of research and more
and more algorithms are being developed for its various problems. The disci-
plines involved, or potentially involved, besides computer science, are algebra,
geometry, computational geometry, graph theory, physics, and optics.

11

Chapter 2

Thesis Objectives Overview

The purpose of the work done during the training period was the creation of a
basic graphics software library, devoted to generation, manipulation and visu-
alization of two dimensional (raster) and three dimensional (vectorial) graphics.

As thesis work, the implementation of the library in example software, one
for batch 2D image processing, UGP, one for demonstration of combined 2D/3D
capabilities. The former, following the UNIX style, is command line driven and
implements : image loading, manipulation (some punctual and non punctual
filters, lines drawing) and saving.

The latter is a bit more multipurpose, since it is initialized by a script file
which can set up the environment as desired. It basically consists in a camera
flying around in a world populated by graphical objects, some of them animated
and interactive.

The camera speed is real time, thus independent of the machine speed.
Interaction with the world is possible thanks to the command console built

in the program.
This allows the user to communicate in a flexible manner (through ’mes-

sages’) with so-called ’entities’ (the interactive elements in the world) and the
program parameters (drawing settings, navigation options) 1.

From the command line it is also possible to spawn new entities or meshes
(just graphical objects), or delete them.

Bypassing the command line, it is even possible to take interactive control of
entities (sort of ’possessing’ them) through controlling them with direct input
(pointer and keyboard). With this degree of flexibility it was possible to create
some examples of practical application of computer graphics.

These are:
3.1 Terrain representation and navigation
3.2 Remote controlled manipulator visualization
3.3 A needle-like object penetrating a soft tissue

1Described in 9.1.1.

12

Figure 2.1: UGP in terrain exploration mode, in wireframe.

13

Chapter 3

Thesis Objectives Detail

3.1 Terrain representation

In applications involving remote robotics, meteorology, environmental sci-
ences, or flight simulators, it is often desired the representation of terrain related
data, like earth landscapes, altimetries, or geological maps.

With such a vast range of applications and specifications, and different soft-
ware requirements, implemented techniques may vary for each project. Thus,
for example, the best choice for a flight simulator (real time rendering, scalable
quality), may not be the best for a landscape generator (statical rendering, fixed
quality).

Usually terrain representation involves a great amount of raw data to be
stored, indexed, processed, and finally, rendered. Problems often arise when
dealing with unacceptably high amounts of data. This data usually comes from
geological or satellite surveys, and needs further processing to be visualizable.

Examples of such processing are normalization of data values in certain
ranges, reconstruction of missing areas, smoothing and statistical correction
of eventual incorrect data. Since the aforementioned procedures don’t involve
neither graphical computation, nor visualization, they are not directly a render-
ing trouble. But, in order to be suitable for visualization, collected data should
be properly organized into structures optimized for the rendering technique.

For example : in a navigation tool, like a flight simulator, there is the need of
showing on screen only a small portion of the world surrounding the camera,
and avoiding unnecessary computation of the non-encompassing areas. These
areas will be drawn when the aircraft will be in proximity of them. There exists
vast literature offering a lot of techniques for this range of problems, and vast
research is ongoing too.

3.1.1 Terrain representation in UGP

In this application there is a limited possibility to experiment with 3D terrain
navigation, as the program is capable of generating a terrain mesh based on
height and colour descriptions.

The terrain is generated as a triangle mesh by a software component, of

14

MeshCreator class1.
The information about mesh geometry is contained in an image file, in BMP

format2. This contains the heights the vertices should have. The forementioned
BMP file is referred as a heightmap. The colour values of the vertices (and
triangles) are taken from another BMP file, preferrably of the same size (but not
necessarily), a colormap.

The topology of the object is generated automatically as a planar mesh of
adjacent triangles. Each vertex is adjacent to a variable number of other vertices,
depending to its position.

The following command:

meshcreator terrain heightmap data/gcHMsmall.bmp-

colormap data/gcCMsmall.bmp xCells 32 yCells 32-

bounded 0 0 0 100 100 20-

texture data/textures/grandCanyon256x256.bmp

tells UGP to create a terrain mesh, of 32 × 32cells, bounded in a 100 × 100 × 20
box. The height values will be taken from data/gcHMsmall.bmp, while the colour
values from data/gcCMsmall.bmp. Additionally, a texture can be specified, in this
case from the data/textures/grandCanyon256x256.bmp file.

Figure 3.1: UGP in terrain exploration mode, textured.

3.2 Remote controlled manipulator visualization

Another area where visualization can come in hand is remote visual monitoring
of manipulators. Monitoring could be done with a camera pointed on the

1Further description of Mesh class in 5.2 and 10.1.
2In 24 bits per pixel mode.

15

manipulator, and sending frames from time to time to the monitoring station.
However, the shortcoming of this choice is the high need for bandwith of the
video stream data. Another choice could use the position encoders placed on
the manipulator to extrapolate its configuration.

Its constructive parameters (each link’s length, angles, and so on) could be
used to compile an initial Denavit-Hartenberg table, and with actual data about
angles between links and extensions, the current configuration of the manipu-
lator would be set. For example, one can imagine a battery of networked manip-
ulators. Each one, at start-up time, would send its topological and geometrical
parameters (e.g.: a Denavit-Hartenberg table, and possibly some information
about its arms shape) through the network to the station. This could use this
initial description, in combination with dynamical data sent during operation
time, to render on-screen the robot in the current configuration. The visualiza-
tion of a robot arm would thus be an inexpensive way to enhance robot control
by human supervisors.

Such application is useful in telerobotics, a field born in the 1960’s, in the
NASA laboratories. Nowadays telerobotics is taking growing advantage of
graphical capabilities of modern computing machines, and a lot of projects is
going on or have been done.

For example, in the University of Western Australia (http://telerobot.mech.-
uwa.edu.au/) a robot has been interfaced to the Internet through a web interface,
in a manner that anyone could control the robot for a certain time period, and see
the manipulator through a webcam. Another similar projects are taking place
(http://www.robotic.dlr.de/VRML/Rotex/) , with visualization through VRML.

3.2.1 Manipulator visualization in UGP

For demonstrative sake, this application is capable of rendering on screen a
multi-link manipulator, described through information stored in a text file 3.
This file should contain information, written in plain text, about the number of
the links and their initial reciprocal position, and possibly the colour and the
shape of the links (prisms, cylinders, cones, sphere).

Due to the interactive nature of the program and the absence of manipulators
in the house of the author, the link parameters can be adjusted dynamically
by the user. In this implementation, the manipulator is an entity, and thus
controllable by the user.

3.3 Digital imaging and computer graphics in med-
ical environments

The use of digital imaging in medical environment began to grow in the 1970’s,
when one by one, every major medical imaging modality finally could be
digitized [ZONNEV]. A milestones is ’digital vascular imaging’ (1979).

A common problem in radiography was incorrect exposure, solved with
devices digitizing the image and producing the correct contrast, by systems as
the PCR (1982), or Thoravision. Computed tomography, originally developed
for head scanning, produced cross-sections of the brain tissue, on photographs.

3More detailed informations in section 9.2.5.

16

Figure 3.2: Screenshot of UGP with the controlled manipulator.

Now it is possible to send the acquired and digitized data from the front-end
(the CT scanner) to the back-end (the operator console), for immediate process-
ing, visualization and highlighting. The lower consumption of modern X-ray
generators allow the use of CT even in portable ways, thus allowing emer-
gency uses. Magnetic Resonance Imaging (MRI), due to rapid data acquisition
and real-time capabilities is gaining popularity over CT. Techniques as FLAIR
(Fluid Attenuation Inversion Recovery) allow further contrast increase for the
tissues of interest. Dynamic techniques allow the monitoring of temperature
(e.g.:cryotherapy, hyperthermia, focused ultrasound), or quantification of blood
velocity.

Also ultrasound is gaining benefits from digital data representation, in
techniques as colour velocity imaging (CVI) and CVI-Q. With new contrast
media development, with tiny gas bubbles generating increased frequency ul-
trasounds, new imaging techniques are suitable, as ’harmonic imaging’. Often
digitized data is postprocessed, as in dynamic angiography, where multiple
heart X-ray images are taken prior to contrast media injection, and subtracted
from the ones taken after. Computer processing allow the reconstruction of the
vascular tree, with a resolution higher than CT or MR angiography.

Medical data is often represented as a volumetric pattern, in the case multi-
planar reformatting (MPR) or 3D image reconstruction techniques are applied.

Three dimensional reconstruction includes internal views of blood vessels
or bronchi (endoscopic 3-D), or fetal face reconstruction (from standard ultra-
sound data) in order to detect congenital anomalies. Post processing employs
mixed techniques from both medical imaging and computer graphics. This al-
lows detection of 3D structures of interest and new ways of interpretation of
generated surfaces. Surgical simulation is a perfect example of an application

17

much more complex than simple imaging and reconstruction. There, 3D tis-
sues, analogous to that present in surgery, are presented and manipulated with
virtual surgical instruments.

At a further level of complexity there is the prediction of surgery outcome,
for example, by the simulation of a custom-made implant stress. Such simula-
tion could show the weaker parts, pressure points, and so on, basing on initial
data acquisition.

At an ever higher level, image guided surgery is where coordinate sys-
tem of image data is matched with the patient’s one. There, the computers
and machinery involved into the treatment process are called ’clinical work-
stations’, and the surgeon could get dynamically cross-sections of the patient,
through real time acquiring machinery. These sections could be visualized on a
semi-transparent viewing screen, thus giving the surgeon an augmented reality
environment to operate in.

The highest stage, nowadays, is the use of surgical robots. Here, images
can be used to guide the robot to the point of action, where the surgery will
be carried out by the surgeon (passive robot), or the robot itself (active robot).
The situations where the supervising surgeon is remotely located are called
’telesurgery’ or ’telepresence’. These fields of application are currently far from
regular clinical use, and much research is still ongoing.

The need for medical image data interchange led to the development of
standards, as DICOM (Digital Imaging and Communication in Medicine), de-
veloped by ACR (American College of Radiology).DICOM includes standards
for archiving, processing, display, printing, format change, and manipulation of
medical digital images and related information, in an integrated environment
as an hospital or radiology information system.

3.3.1 A needle-like object penetrating a soft tissue in UGP

As an example of a possible use of 3D graphics in medical environment, UGP
implements a (simple) simulation of an elastic tissue under the pressure of a
penetrating needle4. The user controls a needle, (represented as a gray line),
which points towards the center of a tissue portion (on the picture, represented
as a mesh with skin-like texturing).

The user can push the needle ’inside’, thus forcing the tissue to deform.
When the needle has reached a certain, ’limit’ depth, the tissue ’breaks’, leaving
the needle inside, while returning to original surface shape.

The represented physical model of simulation is not in any way realistic.
It is just a demonstration of how 3D graphics can be used for such kind of
animations. Animations can be useful in training medical software, where in-
teractive devices could control virtual surgical tools to perform virtual surgery
interventions.

The user would learn to calibrate his manual skills having a visual (and
physical, when force feedback is present) response to every action.

Obviously, a specialized software would implement more precise models
of interaction and behaviour, beyond the limited scopes of UGP.

4More informations are in section 9.2.4.

18

Figure 3.3: UGP simulating an elastic, breakable tissue.

19

Part II

Theoretical foundations

20

Chapter 4

Two dimensional graphics

4.1 Computer colour and light

When dealing with light and colour, a lot of subjectivity takes place, and in dif-
ferent contexts, different jargons are used. At the beginning of the 20th century,
advantgardist artists started referring in musical terms to colour and visuals 1,
and viceversa [MCCM] 2!

Figure 4.1: Wassily Kandinsky : Improvisation 21a. 1911. Oil on canvas, 96x105
cm. Muenchen, Staedtische Galerie in Lenbach, Germany.

Such synaesthetic3 attempts are a sound example that in this field terminol-
ogy is important to not get confused.

Therefore, an appropriated vocabulary is indispensable to distinguish, in
light ad colour field, objective aspects from subjective ones. In facts, a correct

1Kandinsky’s writing Zelenyj zvuk (Green Sound), or paintings called ’Improvisa-
tion’,’Composition’,’Impression’,’Concert’.

2Schoenberg’s Klangenfarbe.
3In Greek, syn = union and aisthesis = sensation.

21

approach refers to the colour as the human perceiving of light.
In the objective analysis, light can be measured through its energy, intensity,

wavelength, spectrum, etc.
From the subjective point of view the colour perception possibilities offer

much more (this is proved by the fact that the lexicon on the subject of colour
is very rich).

Since computer graphics is principally oriented towards human percep-
tions, special care must be payed to psychovisual aspects of light.

So, experiments conducted on groups of individuals, by various authors,
have lead to several perceptual colour systems, i.e. attempts to express with a
quantitative approach subjective perceptions.

4.1.1 Colour spaces

One of the first perceptual colour models, is the one published by Munsell in
1905 ([WATT], ch.15), describing colours with polar coordinates, with reference
to a set of samples (the Munsell Book of Colour).

Munsell definition of the coordinates he proposed are:
Hue ”It is the quality by which we distinguish one colour family from another, as

red from yellow, or green from blue or purple”
Chroma ”It is that quality of colour by which we distinguish a strong colour from

a weak one; the degree of departure of a colour sensation from that of a white gray; the
intensity of a distinctive hue; colour intensity”

(Brightness) Value ”It is that quality by which we distinguish a light colour from
a dark one”

A further step in this way is the HSV model, by A.R.Smith, in 1978 [WATT].
It bases upon the HSV polar system, or single hexacone system in which the
colours are bounded in such shape.

In this system, transposing of qualitative characteristics of colour into quan-
titative is quite easy, since H,S,and V stands for Hue, Saturation and Value.Thus
expressions as ’colour X is more yellow than Y’ are more natural than in other
colour systems.

A major deficiency of this system is the lack of perceptual independence, thus,
a change in a parameter, say Hue, could influence the change of another param-
eter. Another aspect, common to other colour systems, is perceptual non linearity:
equal distances in the space do not correspond always to perceptually equal
sensations.

Other colour systems were developed, with diverse target in mind : YIQ for
analogue television, for its bandwith efficiency, CMY for editorial practicality,
CIE XYZ for general studies about colour perception.

4.1.2 RGB colour space

The human eye retina is gifted with two types of light perceptive cells: cones
and rods. The cones are further differentiated, and the differentiated reaction
to the spectrum of light among these cells produced a theory claiming the
differentiation of three cone types, being each mainly sensitive to red, green,
or blue light (in particular, blue light showed being much less stimulating than
red and green).

22

Figure 4.2: A colour construction showing the colour cube in RGB space.

The effects of this theory are intersting : it suggests that any perceivable
colour could be obtained through the appropriate combination of red, green
and blue light signals. This intuition is not true, but approximations are possible,
and this is the reason for existence of the RGB colour model.

In this model [FOLEY], adopted by colour CRT and LCD displays, all the
displayable colours are enclosed in a cube defined in the three dimensional
space defined by the R, G and B colour vectors. The displayable colours are a
subset of the ones perceivable by the human.

Since each display device could have its own wavelength spectrum for
the R,G and B components different from another one, the same RGB triples
could look differently on different monitors (the phosphors could differ in
constructive and function parameters).

Another problem, as non linear perceptivity, and the lack of an intuitive
way to imagine the appropriate numerical triple describing a colour make the
RGB system a poor colour description system.

Despite this, it is practical enough to be the standard in computer graphics,
as most of the computer graphic file formats or imaging devices (cameras, scan-
ners, CCD sensors) make use of it. For the same reasons, the image processing
procedures described in the chapter are expressed in terms of the RGB model.

4.2 Transformations and notation

The transformations described in the following sections are a subset ot those
implemented in UGP.

The notation we will use to indicate a pixel located in column x and row y
of the image P, thinking of P as a matrix wide P.width and high P.height, is Pxy,
while we will use P to denote the whole image.

To indicate the red, green, or blue component of the pixel Pxy, we will use
alternatively Pxy.r or Pxy.g or Pxy.b.

When necessary, we will treat a pixel as a vector (in fact it is), writing

23

expressions as, for example, P′xy = −Pxy , which negates the red, green, and
blue components of Pxy.

For simplicity, we make the assumption the R,G, and B, ranges are the [0,1]
interval.

4.3 Punctual transformations

Punctual transformations are the ones affecting the single pixels without being
influenced by the surrounding ones.

The notation we will use for a punctual transformation punctual of the pixel
Px,y will be :

punctual(Pxy, parameters),
where parameters could be possible parameters influencing the result of the

punctual operation.
Nearly every implemented transformation (in the 2D library) can be weighted

through one parameter, the effect , included in [0,1] domain, which makes the
resulting pixel as a convex combination of the fully transformed one and the
original pixel:

punctual(Pxy, parameters, e f f ect) := e f f ect · punctual(Pxy, parameters) + (1 −
e f f ect) · Pxy

Since the effect of this weighting is trivial, it will be omitted in the following
descriptions, altough it is implemented in the program.

4.3.1 Desaturation

Desaturation consists in subtraction of chroma, and it is implemented by aver-
aging the values of R,G and B channels.

This because the gray colours are positioned along the (1, 1, 1) axis and this
transformation aligns the r,g,b values on this axis, keeping the pixel energy
(practically, the norm of the colour vector) the same.

desaturate(Pxy).r = desaturate(Pxy).g = desaturate(Pxy).b := Pxy.r+Pxy.g+Pxy.b
3 or

desaturate(Pxy) := Pxy/Pxy︸��︷︷��︸
=�1

·Pxy.r+Pxy.g+Pxy.b
3

4.3.2 Negative

Negation consists in complementing the lightness values of every channel to
its maximum. In our notation, the maximum value is 1.

negative(Pxy) := �1 − Pxy

4.3.3 Saturation

Saturation adjustment affects the individual channels distances from the pixel
average value.

It is similar to the contrast, but applied to the individual pixels, unrelated.
The effect can be obtained through :
saturated(Pxy) := (saturated(Pxy).r, saturated(Pxy).g, saturated(Pxy).b)
saturated(Pxy).r := max(min(Pxy.r + e f f ect · (Pxy.r − desaturate(Pxy)), 0), 1)

24

Figure 4.3: Negative.

saturated(Pxy).g := max(min(Pxy.g + e f f ect · (Pxy.g − desaturate(Pxy)), 0), 1)
saturated(Pxy).b := max(min(Pxy.b + e f f ect · (Pxy.b − desaturate(Pxy)), 0), 1)

4.3.4 Brightness and Vividness

Brightness effect could be reached adding a uniform amount to the R,G,B values,
or even multiplying the triple by an increasing factor, say 1.1, such that the
maximum component be less than 1. The side effect of the second approach
is a small increase of contrast in the image, and could be better referred as a
Vividness effect.

brightened(Pxy, e f f ect) := Pxy + e f f ect(1 −min(Pxy.r,Pxy.g,Pxy.b))
vividized(Pxy, e f f ect) := Pxy · e f f ect(1/max(Pxy.r,Pxy.g,Pxy.b))

4.3.5 Whiteness

Whiteness is the proximity to the white colour in RGB space, and adjusting
’whiteness’ could consist in a convex combination of the source pixel with the
white colour.

white := �1
whitened(Pxy, e f f ect) := Pxy · (1 − e f f ect) + e f f ect · white

4.3.6 Blackness

Blackness is the proximity to the black colour in RGB space, and adjusting
’blackness’ could consist in a convex combination of the source pixel with the

25

Figure 4.4: Whiteness.

black colour.
black := �0
blackened(Pxy, e f f ect) := Pxy · (1 − e f f ect) + e f f ect · black

4.4 Non Punctual transformations

Non punctual transformations, are the ones in which the final value of a pixel
depends on the value of the neighborhood pixels.

They can be sometimes represented as convolutions, or, more precisely,
discrete convolutions in discrete, two dimensional space.

In this (computing) context these transformation can be called matrix con-
volution filters. In the following section convolutions filters are described, and
in the following resampling algorithms will be.

4.4.1 Blur and matrix convolutions

Blur operations are the ones which give the original images an out-of-focus
fashion.

The blur effect is obtained, for each pixel, through a weighted sum of the
surrounding ones, where the weights are decreasing as pixel distance increases.

In fact, each result pixel is a convoluted sum of the surrounding pixels.
For each surrounding pixel an ’influence value’ is computed with respect to

the target, based on the relative distance from it.

26

Figure 4.5: Blackness.

Since the source pixels are surrounding the target at fixed distances, the
influence values could be easily stored in a (possibly) square matrix of odd
order, where the middle entry (central column, central row) should contain
the self-influence value for the target pixel itself. This matrix is called the filter
kernel.

In order to not alter the total energy of the image, the sum of the weights of
the pixels in the filter kernel must be equal to 1 (a normalized kernel), or the sum
result will have to be divided by the sum of the kernel elements (this is correct
if it is assumed that all colour channels carry the same energy, and the colour
values are linearly proportional to the energy; in computer graphics it is a weak
hypothesis since the energy associated to the values increases exponentially)
[FOLEY].

However, since the pixels at the image borders and corners (and nearby,
for larger kernels) are convoluted with a smaller number of other pixels (the
upper right pixel doesn’t have upper and right neighbourhood pixels), some
energy loss occurs, and the visible effect is a darkening at the image borders.
Alternatively, a smart blur procedure would use different kernels for those
pixels, or could work in a ’image wrap’ fashion, considering the left upper
pixel as the right neighbourhood of the upper right. This last effect is strongly
desired in texture creation, where border continuity is a prerequisite.

The filter kernel could be built with the following parameters : the horizon-
tal/vertical (they can differ) distances from the farthest considered pixels, and
the function calculating the influence values upon the distances.

A popular blur technique is the gaussian blur filter, whose kernel Kgaussian

27

is obtained using the Tartaglia-Pascal triangle, choosing a row R from it, and
premultiplying it by its own transponded RT :

Kgaussian := RT × R

1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
...

Figure 4.6: The Tartaglia-Pascal triangle.

An example of gaussian blur kernel of order 2:


1 2 1
2 4 2
1 2 1

 =


1
2
1

 × (1 2 1)

The sum of the coefficients of Kgaussian is 16, so the corresponding normalized
kernel KgaussianN is:


0.0625 0.125 0.0625
0.125 0.25 0.125

0.0625 0.125 0.0625


The blurred pixel Px,y, considering a non normalized kernel K, is computed:
blur(Px,y,K, radius) :=

1∑
i, j∈[0,2·radius] Ki, j

radius∑
i=−radius

radius∑
j=−radius

Px+i,y+ j · Ki+radius, j+radius

With a normalized kernel KN:
blur(Px,y,KN, radius) :=

radius∑
i=−radius

radius∑
j=−radius

Px+i,y+ j · KNi+radius, j+radius

In computing, the first form is more used, since often the colour values are
expressed as integers, and a lot of floating point multiplications could be less
practical to compute than a number or integer multiplications followed by a
floating point division.

4.4.2 Contrast

The contrast operation compares each pixel channel’s intensity to the average
intensity for that channel in the image. If this is lower, the operation lowers it
further, through a non-linear function.

28

Figure 4.7: Normalized binomial coefficient values for the correspondent kernel.

average(P) :=
1

P.width · P.height
·

P.width−1∑
x=0

P.height−1∑
x=0

Pxy

4.4.3 Despeckle

The Despeckle operation is used to mitigate pixels contrasting too much with
the surrounding ones.

The procedure compares the 8 adjacent couples of the nearest 8 pixels sur-
rounding the source pixel, finding the couple with the bigger gap, and memo-
rizing it.

Then, if the gap between the source pixel and any of the 8 neighbourhoods
is bigger than the memorized one, the pixel is replaced with the average of the
8 pixels.

This filter is used to eliminate single pixels that could be imperfections in
the image.

Enrichment options could introduce a tolerance to stretch/expand the com-
parison gap, and the possibility to blend the replaced pixel with a percentage
of the original one.

In the following notation a helper function max(pixel, pixel), written in declar-
ative style, is used to make the pseudocode more readable. It determines the
pixel with the greatest norm (the euclidean norm, treating the pixel as a vector
of reals).

max(pixel P1, ..., pixel PN) := Pi s.t. abs(norm(Pi)) ≥ abs(norm(Pj)),
i, j ∈ {1, ...,N}

29

Figure 4.8: Contrast.

maxSurroundingGap(P, i, j) := max(Pi+1, j+1−Pi+1, j.Pi+1, j−Pi+1, j−1.Pi+1, j−1−Pi, j−1.Pi, j−1−
Pi−1, j−1.Pi−1, j−1 − Pi−1, j.Pi−1, j − Pi−1, j+1.Pi−1, j+1 − Pi, j+1.Pi, j+1 − Pi+1, j+1)

maxGap(P, i, j) := max(Pi+1, j+1−Pi, j.Pi+1, j−Pi, j.Pi+1, j−1−Pi, j.Pi, j−1−Pi, j.Pi−1, j−1−
Pi, j.Pi−1, j − Pi, j.Pi−1, j+1 − Pi, j.Pi, j+1 − Pi, j)

i f (max(maxGap(P, i, j) > maxSurroundingGap(P, i, j)))
then Pi, j :=

Pi+1, j+1+Pi+1, j+Pi+1, j−1+Pi, j−1+Pi−1, j−1+Pi−1, j+Pi−1, j+1+Pi, j+1

8

4.4.4 Sharpening

The formula we used to implement gaussian blur, is suitable for other filters
too.

In particular, with the proper filter kernel, even the opposite effect can be
reached, obtaining a sharpening filter.

A sharpening kernel has the peculiarity of null or negative influence values
for the pixels surrounding the source. Thus, the only positive entry in the matrix
should be the middle one. Some examples follow, for matrices of order 3 (radius
1). Note that the kernels are normalized (the sum of the entries is always 1).

K1
sharpening =


0 −1 0
−1 5 −1
0 −1 0

 ; K2
sharpening =


−1 −1 −1
−1 9 −1
−1 −1 −1

 ;

K3
sharpening =


−k −k −k
−k 8k + 1 −k
−k −k −k


Finally, the matrix convolution formula applied to a sharpening kernel:

30

sharpen(Px,y,Ksharpening, radius) :=

radius∑
i=−radius

radius∑
j=−radius

Px+i,y+ j · Ksharpeningi+radius, j+radius

4.5 Resizing (resampling)

More correctly refferred as resampling, resizing algorithms assign to a given
pixelmap P, with size P.width× P.height a pixelmap P′ sized P′ .width× P′ .height

The following algorithms (upsampling and downsampling) work strictly
as they are named.

Thus, the first will only work when both the new width and height are at
least bigger than the old ones of a factor equal to 1, and the second if this ratio
is at most 1.

To resample an image of size 256x256 to, say, 128x512, a combined procedure
would first enlarge the image to 256x512 with the upsample algorithm, with
factors 1 for width and 2 for height, and then will stretch the result with factors
0.5 and 1 with the downsampling algorithm.

However, the reverse order of resampling procedures would speed up the
procedure, since there were no such a big intermediate image as 256x512 but a
slightly smaller 128x256 one.

These algorithms are implemented in the 2d library. The first is a variant of
the bilinear interpolation.

4.5.1 Resizing - Upsampling

αx = (P.width− 1)/(P′ .width − 1)
αy = (P.height− 1)/(P′ .height − 1)
f or(i = 0; i < P′ .width; i + +)

f or(j = 0; j < P′ .height; j + +)
x = i/αx
x0 = �i/αx�
x1 = �i/αx�
y = j/αy
y0 = � j/αy�
y1 = � j/αy�
βx = x − x0
βy = y − y0

d↖ =
√
β2

x + β
2
y

d↘ =
√

(1 − βx)2 + (1 − βy)2

d↗ =
√

(1 − βx)2 + β2
y

d↙ =
√
β2

x + (1 − βy)2

p↖ = 1 − d↖/
√

2

31

p↘ = 1 − d↘/
√

2
p↗ = 1 − d↗/

√
2

p↙ = 1 − d↙/
√

2
ε = p↖ + p↘ + p↗ + p↙
ε↖ = p↖/ε
ε↘ = p↘/ε
ε↗ = p↗/ε
ε↙ = p↙/ε
P′i j = e↖ · Px0 y0 + e↘ · Px1 y0 + e↗ · Px0 y1 + e↙ · Px1 y1

4.5.2 Resizing - Downsampling

αx = P.width/P
′
.width

αy = P.height/P′.height
f or(i = 0; i < P′ .width; i+ +)
f or(j = 0; j < P′ .height; i + +)

x0 = i · αx
x1 = (i + 1) · αx
y0 = j · αy
y1 = (j + 1) · αy
Pij = null
f or(k = �x0�; k < �x0�; k + +)

f or(l = �y0�; l < �y0�; l + +)
P′i j = Pkl

f or(k = �x0�; k < �x0�; k + +)
P′i j+ = Pk�y0� · (�y0� − y0)
P′i j+ = Pk�y1� · (y1 − �y1�)

f or(l = �y0�; l < �y0�; l + +)
P′i j+ = P�x0�l · (�x0� − x0)
P′i j+ = P�x1�l · (x1 − �x1�)

β0 = (�x1� − �x0�) · (�y0� − y0)
β2 = (�x1� − �x0�) · (y1 − �y1�)
β3 = (�x0� − x0) · (�y1� − �y0�)
β1 = (x1 − �x1�) · (�y1� − �y0�)
ε0 = (�x0� − x0) · (�y0� − y0)
ε2 = (�x0� − x0) · (y1 − �y1�)
ε1 = (x1 − �x1�) · (�y0� − y0)
ε3 = (x1 − �x1�) · (y1 − �y1�)
P′i j+ = P�x0��y0� · ε0

P′i j+ = P�x0��y1� · ε2

P′i j+ = P�x1��y0� · ε1

P′i j+ = P�x1��y1� · ε3

γ = (�x1� − �x0�) · (�y1� − �y0�)
P
′
i j/ = (β0 + β1 + β2 + β3 + ε0 + ε1 + ε2 + ε3 + γ)

32

Chapter 5

Three dimensional graphics

This section introduces some fundamental concepts used when dealing with
computer graphics.

5.1 Points, planes, and straight lines

Localization in Euclidean space is obtained through a three axis coordinate
system, associating a triple of real numbers (x,y,z) to each point (or vertex).

Two non-coincident points locate univocally a straight line, and the straight
line portion between them is a segment. The normalized difference vector be-
tween any two points laying on a straight line gives us a vector representing
the inclination of the straight line.

This oriented vector is also referred as gradient.
Gradient information is equivalent even if its (l,m,n) values (see below) are

multiplied by a common factor, as long as proportionality of its components is
the same. Thus, we can represent a straight line with a vector D := (l,m, n) as
its direction, plus a base starting point P := (x0, y0, z0) lying on it. Any point
(x, y, z) laying on the given straight line respects the equations :


x = x0 + l · t
y = y0 +m · t
z = z0 + n · t

(5.1)

In particular, the parameters of a straight line can be extrapolated from two
points P1,P2 and treating P2 − P1 as D and P1 as P.

A straight line in space can also be seen as the intersection of two planes.
The notation for a plane is made up of its normal (orthogonal) vector N :=

(a, b, c), and a scalar parameter d, or the equivalent quadruple.
The plane (a, b, c, d) is the set of points (x, y, z) for which is true a · x + b · y +

c · z + d = 0.
Since N is normal to the plane, the plane closest point to the origin (�0) is

Pnearest := (xn, yn, zn), and will be oriented towards the N direction, and thus, for
a certain α, Pnearest = α ·N = (αa, αb, αc).

Follows :
a · αa + b · αb + c · αc + d = 0⇒
αa2 + αb2 + αc2 + d = 0⇒

33

α(a2 + b2 + c2) + d = 0⇒ α = −d
(a2+b2+c2) ⇒ Pnearest = αN = −d

(a2+b2+c2) N =
−d
||N||2 N

If considering the plane nearest point to another generic point in space, P,
the reasoning is analogous, and only a displacement of a projected vector is
necessary to be added:

Pnearest(P) = −d
||N||2 N + (P +Π<N>(P)) = −d

||N||2 N + (P + N·P
||N||2 N) = P·N−d

||N||2 N + P

5.1.1 Containment of points in polygons

A plane is univocally determined by three non-aligned points in space, in a
certain order.

A triple of points (P1,P2,P3) define a plane, and the space among them is a
triangle.

Numerically, the triangle is a subset of the span of the three points, with the
constraint that the sum of the point coefficients must be equal to 1 (and any
coefficient not less than 0). More precisely, the triangle is the convex hull of the
three points.

This property gives us a way to check if a point belongs to a triangle.

E1

E2
E3

P
P1

P2

P3

Figure 5.1: A point belonging to a triangle.

Solving the matrix associated to 3 points coordinates as columns, the coeffi-
cient column as the unknown, and the result column as the point to check, we
check whether the sum of coefficients in unknown column equals 1.


P1.x P2.x P3.x
P1.y P2.y P3.y
P1.z P2.z P3.z

 ·

α1
α2
α3

 =


P.x
P.y
P.z



P is in the triangle delimited by P1,P2,P3 iff (α1+α2+α3 = 1; α1, α2, α3 ≥ 0)
In practice, a small tolerance can be accepted when doing this kind of checks

when computing with floating point numbers, due to unavoidable numerical
errors.

A point laying on a generic n-polygon has also the property
∑n

i=1 αi = 1,
but for practical uses this property is less popular for checks, because the input
points could not lay on the same plane. Besides this problem, the following
system would have more than one solution, so other techniques should be
used to determine a suitable one:


P1.x P2.x P3.x ... Pn.x
P1.y P2.y P3.y ... Pn.y
P1.z P2.z P3.z ... Pn.z

 ·



α1
α2
α3
...
αn


=


P.x
P.y
P.z

 , (αi ≥ 0, i ∈ 1, .., n)

34

For practical reasons, the polygons are usually split in triangles and then
one proceeds as with the first method, iterating for every polygon.

An alternative containment check computes the sum of the angles between
the lines from the point to each vertex. If the sum equals 360 deg, the point is
contained in the polygon.

5.1.2 Ray - polygon intersection

The ray-polygon intersection is calculated in three steps [WATT] :

1. obtaining the equation for a plane containing the polygon

2. checking for the intersection of this plane with the ray

3. checking that this intersection is inside the polygon

The parametrical form of a ray (an oriented segment) from point R1 to R2,
is:

R = R1 + (R2 − R1)t is equivalent to
R.x = R1.x + (R2.x − R1.x)t = R1.x + it
R.x = R1.y + (R2.y − R1.y)t = R1.y + jt
R.x = R1.z + (R2.z − R1.z)t = R1.z + kt
, where 0 ≤ t ≤ 1
The point R will lay on both the ray and the polygon plane (A,B,C,D) if the

preceding equation and the plane equations are satisfied :
A · R.x + B · R.y + C · R.z +D = 0⇒
A · (R1.x + it) + B · (R1.y + jt) + C · (R1.z + kt) +D = 0⇒
A · R1.x + B · R1.y + C · R1.z +D + t(A · i + B · j + C · k) = 0⇒
t = −(A·R1.x+B·R1.y+C·R1.z+D)

(A·i+B· j+C·k) ,with (0 ≤ t ≤ 1)
If the t is negative, the plane is behind the ray.
If it is greater than 1, the plane is in front the ray, but over R2.
If it is in the [0, 1] interval, the plane intersects with the ray.
The ray-polygon intersection exists if the computed intersection point lays

in the polygon.
This condition is computed with any polygon containment check.

5.1.3 Back and front polygons

Given a triangle bounded in P1,P2,P3, we can find the parameters of its plane
(a, b, c, d), by the fact that N = (a, b, c) is the vector normal to the plane, and it is
obtainable by N = V1 × V2, with V1,V2 being two vectors parallel to the plane.
These can be chosen as V1 := P2 − P1,V2 := P3 − P1, (or even the negated ones :
V1 := P1 − P2,V2 := P1 − P3)

The parameter d is easily calculated, as d = −(a · Px + b · Py + c · Pz), with P
being any point on the plane, such as P1,P2,or P3.

Note: if we swap V1 and V2 (or the swapped and negated), the resulting
normal N would be the negated of the previous one. Also the d parameter
would be negated. This leads to the conclusion that with a triple of points we
can locate two planes, depending on the vectors to use for the normal.

This fact is used in computer graphics for introducing the concept of face
culling.

35

In a rendering system, when dealing with triangles, it is possible to draw
them on screen only if their orientation to the viewer make them ’visible’. We
can think of the polygon as ’visible’ when its normal is oriented toward the
viewer.

So, when the angle of the view vector V with the polygon normal vector N
is in the [π2 ,

3π
2] interval. This occurs when the cosine of this angle is negative.

Since cos(V,N) = V·N
‖V‖‖N‖ , and the denominator is always positive, the desired

condition for a visible face is V ·N < 0.
This concepts are usually employed for hidden surface removal (face culling),

lightning calculation tasks, or collision tests.

N

N

P1
P1

P2

P3
P2

t
P3

Figure 5.2: Triangle orientation.

5.2 Meshes

The most popular way in computer graphics to represent three dimensional
objects employs a net, or mesh of planar polygonal facets.

In this application, the only polygons used are triangles. This choice was
made in regards to computation ease and rendering facilities offered by a tri-
angle representation. Therefore, the mesh term will always refer to a triangle
mesh. We associate to a mesh : a set of E edge elements, a set of V vertex ele-
ments, and a set with T triangle elements. An additional property of the meshes
used in this application is that they are hulls.

5.2.1 Hull properties

Imagine to have some square carton sheets. To join them to form a closed box
you have to order them such that every sheet border touches another just one
time. If even only one border remains unjoined, there’s an evident ’hole’ in the
structure.

Back to our mesh representation, if there exists at least one edge not shared
by a pair of triangles, the mesh will appear ’open’, or, otherwise, not as a hull.

Another constraint, occurring when triangles are oriented (we can choose
to not orient them, making them visible from both sides), is that two adja-
cent triangles, when calculating their normals, must consider the shared edge
orientation in opposite orientations. If the edge is considered oriented in the
same way by both triangles, the normals will have an angle in [0, π2] when the
angle between the planes is in the [π2 , π] interval and viceversa (the normals
will have an angle in [π2 , π] when the angle between the planes will be in the
[0, π2] interval). The visual effect occurring in the rendered image, with back face
elimination enabled, will be ’holes’ where triangles should be, just as triangles
were missing.

36

V1

a) b)

Figure 5.3: Incorrectly (a), and correctly (b) ordered edges.

Thus, the following properties are valid for every hull mesh, but could not
be valid for any generic mesh.

An edge is localized by a couple of vertices.

V2

V1

E1

Figure 5.4: An edge.

If three non-coincident edges have three points in common, two by two,
then the edges define a triangle.

V2

V1

V3

E1

E2

E3

Figure 5.5: A triangle.

In a mesh representation with the hull constraint, each edge should appear
exactly in 2 triangles (or we can say that the two triangles have an edge in
common).

And each triangle shares exactly 3 edges (and vertices) with other ones.

5.2.2 Some properties of triangle meshes

Given a mesh representing an object (it must be a closed mesh), with V vertices,
E edges connecting them, we have always

E = 3 ∗ (V − 4) + 6 and

37

V2

V1

V3

E1

E3
E4

E5
V4

E2

Figure 5.6: A triangle enclosed by three edges.

V2

V1

V3

E1

E3

E2

Figure 5.7: Edges sharing in adjacent triangles.

T = 2/3 ∗ E , and thus
T = 2V − 4
The second property derives from the fact that each edge appears only 1

time in 2 triangles.
The first is a bit trickier, but can be proved by induction, beginning from the

smallest polyhedron, the tetrahedron (for example, a pyramid with triangular
basis), with E = 6,V = 4,T = 4, as shown in the following figure.

By adding to it an edge E8 from vertex V1 to edge E6 (thus halving a face),
we must take care to split E6 edge in two, and split the other triangle touching
E6, and we get new edges E7,E9, and two new triangles. Now it is E=9, V=5,
T=6.

We increased the vertex count by 1, the triangle count by 2 and the edge
count by 3. If we continue, we discover that every new vertex brings 3 edges
and 2 triangles to the mesh.

The important thing to keep in mind when proving this is to verify whether
each vertex lays on the end of an edge. If not, we split in two the edge and add
another one, symmetrically to the split edge. Obviously, when adding another
edge, we place its end on a vertex (otherwise we would continue endlessly).

So far, we have found that the triangle count increased by 2 and the edge
count by 3 (1 for the new edge, one from the split edge, and one from the
additional edge)! The third fact is derived from the first two.

5.2.3 Convexity

A mesh is convex if no triangle’s front face normal, treated as a ray, hits any
triangle face.

In other words, every mesh triangle plane partitions the space in two sub-
regions: one containing all vertices from the mesh, another one with no mesh
vertices.

38

V1

V2

V3

V4

E1

E2
E3

E4
E5

E6
E6

E7
E8

E9
V5E6 splitting

Figure 5.8: A tetrahedron with split faces.

If any of the triangle planes violates this condition, the mesh is not convex.
A consequent property of convexity is that every triangle plane normal, if

inverted, has the center of the mesh in the positive subspace (’front’ region).
Moreover, if the mesh is convex, there exists no such triangle couple with

their external angle negative. Visually, all of the normal vectors pointing exter-
nally from the mesh are divergent.

<180
>=180

convex shape non convex shape

Figure 5.9: A convex and a non convex mesh.

5.2.4 The implemented data structure

The data structure implemented for mesh representation is hierarchical and a
little redundant.

It is based on an array (an ordered set) of edges E, one of vertices, V, and
one of triangles, T. The vertex data structure holds coordinates, and possibly
colour information. The vertices are stored in the V array.

Each edge data structure holds the indexes for the correspondent vertices
in the V array. The edge is oriented from the first vertex to the second one.

Finally, each triangle structure has indexes to both triangles and edges in
their corresponding arrays (3 vertices and 3 edges).The indexes (or logical
pointers) are ordered.

Since each edge in E array is oriented and shared by two triangles (for hull
consistency), one triangle will consider the edge as it is declared, and the other
will consider it as inverted.

In the figure 5.10 is shown a partial structure for a tetrahedron.

The ’inverted’ or ’as it is’ condition is represented in the data structure as a
boolean value. In the figure the use of the edges for the triangle is marked as ’1’

39

V1

V2

V3

V4

E1

E2

E4
E5

T2 T3 T4T:

E3

2

1

1

2

3

1

2

E3

T1

V4

V:

V3

V2

V1

E6

E4

E:

E2

E1

E5E6

T3(rear face)

T2

illustrated.

In this partial schema only for T1
and E3 all of the connections are

T1

T4

1,0

2,0

3,0

1,1

Figure 5.10: An example of mesh representation.

for inverted and ’0’ for ’as it is’. The numbers indicate the correct order of the
vertices/edges in the triangle.

It is shown that the E3 edge is shared by T1 and T3, having it labeled T1 as
’as it is’ and T3 as ’inverted’ (B). This because E3 originally refers to the ordered
couple (V1,V2), and T3 needs to consider it as (V2,V1).

A pseudocode implementation of the structures;
structure Vertex(Real x,Real y, Real z,Colour c)
structure Edge(Vertex *v1,Vertex *v2)
structure Triangle(Vertex *v1,Vertex *v2,Vertex *v3,Edge *e1,Edge *e2,Edge *e3,Bool

i1,Bool i2,Bool i3)
structure Mesh(Vertex[] V,Edge[] E,Triangle[] T)
The main advantage of this mesh structure is flexibility : more vertices can

be selected for translation/rotation/other transformations via the triangles they
belong to.

If the triangle data would be duplicated in each triangle, such operations
would necessitate to be replicated for each copy, and in case of an error, the
chance of non-congruence between triangle edges could occur.

The possibility of manipulation makes this structure good for hierarchical
body animation, where a certain organization of vertices is essential.

When it comes to rendering, the most popular graphics hardware is opti-
mized to display triangle point triples, and these are directly obtained from the
T array.

For wireframe rendering, it is possible to refer directly to the E array, avoid-
ing the duplication that would occur when drawing edges indirectly, via T.
Analogously, for dot rendering, a direct use of the V array avoids the triplica-
tion of vertices that would occur when using T array triangles vertices.

40

Part III

Software architecture

41

Chapter 6

Introduction

This part will explain the architecture of UGP, after some words on the pro-
gramming style and related issues.

6.1 Programming style

Having done the work in C++, I pursued the style of encapsulating the whole
code in classes, thus exploiting object orientation benefits. Although the class
determination proceeded quite naturally, the process of correct encapsulation
of data structures gave several problems, due mostly to two reasons :

1. the flexibility and performance needs

2. the constraints given by the graphic APIs commands

Since the software got to have real time rendering capabilities, a lot of effort
was given to a proper optimization of the code, and good programming habits,
like access methods use, sometimes were not possible. This solution would
cause the code execution to slow down, if incorrectly optimized.

So, I opted for trade-offs between performance and proper C++ program-
ming style. Practically, this resulted in a certain amount of friend declarations
of classes and methods.

Moreover, the software requirements for flexibility (the main purpose of the
UGP software is experimentation with real time rendering), gave further blur
to the class responsabilities boundaries.

This lack of internal coherence is the result of the workarounds made to
maximize the program flow efficiency, but since the software was built with
extension in mind (mostly based on inheritance), the extension interfaces are
well defined and consolidated (see section 9.1.1).

The code makes direct use, aside of standard C++ libraries, of the following
cross platform libraries:

SDL (Simple DirectMedia Layer),v.2.7 [SDL] and OpenGL [WRIGHT],[SGI]
(1.1 and beyond).

This choice allows portability in Windows and Linux environments (where
the software was tested) and, accordingly to SDL documentation, in *BSD,
MacOS, and BeOS too.

42

6.2 UGP components

The main classes of UGP are described in the following sections, and they are
summarized in the following picture.

Dez3DEngine

SDLEngine

Dez3DEntity

Mesh

DezCamera

Dez3Drawer

Dez3DTissue

DHLinkStructure

DezRobotArmDH

DezGLFontDrawerDez2DDrawer

DezGLQuakeCamera

DezCommandConsole

1

1

1

1

*

*

1

*

*

Figure 6.1: The main component classes of UGP.

The Dez3DEngine class (in fact, a singleton class) has the role of a container
for all the objects, and encapsulates the program control flow.

Certain tasks, like rendering, viewing system management, input device
management, are implemented in separate classes, so an adequate separation
of responsabilities defines each class purpose.

The mutual interaction of these (core) classes is strict, and their code some-
times contain member data cross references (mostly in time critical functions,
being them the program bottleneck) that makes maintenance and debugging a
little harder.

However, when critical performance attention was not necessary (in meth-
ods which use is relatively rare), focus was given on a correct organization and
code clarity.

6.2.1 UGP components by dissection

Dez3DEngine is an aggregate of four tightly related classes: Dez3DDrawer,-
Dez2DDrawer, DezCamera, and Dez3DCommandConsole.

The
The four classes correspond to four objects aggregated into the engine object

(there is a 1 to 1 relation between them and the engine class), and their lifetime
is the same as its.

However, the DezCamera object has a little weaker bound to the engine, since
it is replaceable at any time with any class in its hierarchy 1.

The forementioned classes are the service classes which make the engine
work.

1See section 8.1.5.

43

The purpose of UGP, making use of this code, is to experimentate with
graphics, and this goal is reachable when the behaviour of the program is
customizable enough with the minimal effort.

With this goal in mind, all the classes without managing/control tasks are
the ones managed by the software. The UGP program, then, can be thought as
the environment managing these classes objects, called entities.

All of them are in the inheritance hierarchy starting with the Dez3DEntity
class. In the previous picture were shown two entity classes, Dez3DTissue and
DezRobotArmDH, but more ones exist, and are described in ch. 9.2.

Their interface is made in such a way, that the minimal effort is needed for
programming new entities for experimental purposes.

As described later, the Dez3DEngine class, being a virtual class, has defi-
ciencies (input handling and window API managing missing) covered by a
specialized class, SDLEngine, described in 7.2.

6.2.2 Minor components and accessory classes

The preceding figure didn’t show the data structures keeping the graphics data
(meshes, geometry, images).

These were developed separately, in statically linked libraries, called Dez2D
and Dez3D, with, respectively, functionalities for two and three dimensional
graphics.

Dez2D library supports raster image loading, in bmp 24 bit format only,
because more image formats could easily be supported with other library use.

The class holding the image data and image processing data is DezImage, and
relies on the pixel abstraction implemented in Dez2DPoint. This is the special-
ization (for the double C++ type) of the Dez2DPointT template class, which holds
pixel data and implements basic pixel processing (punctual transformations).

Mesh

VertexData EdgeData TriangleData

Vector3D

Vector3DT<X>

Dez2DPoint

Dez2DPointT<X>DezImage

*

* * *

Figure 6.2: Accessory classes.

The three dimensional graphics data structures make use of the two di-
mensional ones, when dealing with colour information (a Dez2DPoint object is

44

member of VertexData), or image information (DezImage is used in the drawing
classes).

Vector3D<X> is the template class for a three dimensional vector, and in-
stantiated for the double type makes up the Vector3D.

The direct expansion is VertexData, which adds the colour information, oth-
erwise missing, to the Vector3D type.

Put together, a lot of VertexData objects, related in the appropriate way,
can represent a triangle mesh, but not without the appropriate structures repre-
senting the fundamental edge and triangle concept (EdgeData and TriangleData).
These two classes, with the use of pointers, realize the concept of mesh as de-
scribed in section 5.2.4.

So, the Mesh objects are composed of TriangleData, EdgeData and TriangleData
objects, and are the structures used by the engine for the geometry.

To produce the meshes correspondent to primitive shapes, there is the state-
less MeshCreator class, which contains methods to create various Mesh objects,
described by a command string as input. Its description is located in chapter
10.1.

6.2.3 The components and libraries

Direct use of the software libraries with graphics and input capabilities is a
necessity of this kind of programs. However, an appropriate way of arranging
the code gives the possibility to a future porting to other similar libraries.

With this goal in mind, the SDLEngine was made the only class which uses
the SDL calls directly.

This choice was quite easy to implement, since SDL functions relate to in-
put, which by its nature is directed to the engine object, and graphics (OpenGL)
initialization and window management, functions executed rarely in the pro-
gram.

With OpenGL this was possible in a more limited way.
The classes using OpenGL are the ones with drawing capabilities : Dez3D-

Drawer, Dez2DDrawer, DezGLFontDrawer (aggregated to Dez2DDrawer), Dez-
Camera (for reasons explained in 8.1.5), and Dez3DEntity.

The drawing classes make use of OpenGL for evident reasons, but classes
such as Dez3DEntity could also do not.

The reason entities can make direct use of OpenGL is that they could have
some special data objects not drawable by the engine, or could implement some
specialized (or optimized) drawing code.

Future implementations of the program will probably discourage the use of
OpenGL in derived Dez3DEntity code.

Actually, Dez3DEngine makes use too of OpenGL, in the renderScene() method,
but it is not a problem since the method is virtual, and in future, the OpenGL
code will migrate to SDLEngine or Dez3DDrawer.

6.3 Code documentation

Detailed code documentation is maintained in html,pdf,ps formats in the code
subdirectories.

45

The documentation is generated with automatic tools when the code is
modified, so the most updated description available is there.

46

Chapter 7

Engine and control

7.1 The base engine class and inheritance

Here the notion of ”engine” stands for indicating the organized and structured
set of data, functions/algorithms used to control, manage the world dynamics,
and finally visualize, 3d objects on a 2d screen.

The engine abstraction was implemented in the virtual Dez3DEngine class,
referred for simplicity as engine.

The basic engine class, Dez3DEngine, doesn’t handle input for simplic-
ity/portability reasons, but offers methods to be overridden and implemented
making use of some chosen API.

Dez3DEngine was programmed as a base class for derived engines, special-
ized in other tasks (games, small simulators, viewers, small editors, etc).

The basic facilities (object drawing and object managing) are kept general
the most possible, in the hope to be portable enough to be used as a skeleton
for future, heterogeneous applications.

In UGP case, the employed extended class of Dez3DEngine implementing
input is called SDLEngine, and uses SDL C functions to get the input and
initialize OpenGL.

Since it is task of the derived engine class to initialize the video subsystem,
the basic class doesn’t instantiate a Dez3DDrawer object, letting the former to
create it, when it is possible (when eventual system check indicates the presence
of an adequate base software platform).

7.2 The derived class SDLengine

As said, Dez3DEngine is a virtual class, because generality needs led to the
choice to not implement there the input, but to define all the interface likely to
appear in an interactive graphics program of this kind.

The SDLEngine class is the specialized version of Dez3DEngine class used in
UGP, and carries the tasks of input handling and OpenGL initialization.

47

7.2.1 OpenGL initialization

At construction time, an SDLEngine object has to initialize some base class
members necessary for drawing with OpenGL.

This operation has sense only if the proper rendering context is set up. The
rendering context is a software abstraction of the data structures between the
program and the window system (and the underlying graphic devices).

To create one a rendering context for OpenGL, the code should call routines
of the window system, and register the application for the video resources (and
this is not always possible : imagine a fullscreen application already running
and using some exclusive buffers of the graphics device; another application
could not have the same resources available).

The knowledge of the window systems was beyond the scope of this work,
(aside from being complicated), and the opted solution was the use of the cross
platform SDL library.

The SDLEngine constructor attempts the initialization of the OpenGL sub-
system, asking the window system (via the SDL VideoModeOK(...) function) for
the availability of the video mode selected f the program (the video mode is
defined by horizontal and vertical resolution, and bit depth of the pixels).

If the video mode selected by the user (it can b selected in the initialization
file) is not supported, the program will not try to use, but to select another
working video mode. If any video mode is not available, the program will fail
to create a working OpenGL context, and will have to terminate.

If the desired video mode was appropriate, the context is created with a call
to SDL SetVideoMode(...).

The video setting up can be completed, with a series of calls to set the
OpenGL state concerning the view system and drawing options.

7.2.2 Input handling

Input registration happens with a SDL WM GrabInput(...) call, and allows the
program to read input with SDL facilities.

The input reading is a task performed frame by frame, from within the
virtual method input() .

Since the UGP program has two operating modes (normal mode and entity
mode), there are two functions for grabbing input, one for each mode. To select
the method to call to grab input, the program sets an appropriate function
pointer to one of the two methods, and calls it until state is changed.

The two methods are readInput() (input is interpreted by the engine) and
lightInput() (input is interpreted by the currently selected entity)

On the inside, the methods are similar, and consist in a poll cycle to the
window managing systems, asking for events. Every captured event (in form of
a SDL Event structure) is recognized and executed, if associated to an action.

The event queue waiting for the program is emptied, having executed all the
commands associated to the events, and the function terminates successfully.

The events for which the SDL library is sensitive are key presses, key releases
and mouse moves, presses and releases.

The lightInput() method is similar, but instead of having the binding between
all user events and actions, it has only a part of these. The sensed events are

48

recognized and fill a little data structure, passed to the current entity as an input
vector, which will drive the entity behaviour.

Aside of these input grabbing functions, other pure virtual functions exist
in the base class, and force the implementation of an appropriate mechanism
to switch the modes when needed (for example, deleting an entity will make
impossible to having it currently selected, and the input will have to be switched
again to the engine).

These functions are the virtual ones inputToEngine(), inputToOthers(), in-
putSwapped().

7.3 The command console and control

Given the experimental/didactic nature of the developed software, there was a
great need of an expressive way of text based user input to the engine.

Similarly to many videogames, or CAD systems, there is a console command
system enabling the user to communicate typed commands to the software.

When the engine is in command console mode, the typed keyboard input
is stored in a text buffer in a Dez3DCommandConsole object.

When the user presses the submitting key (the Return (enter) key), the text
is split into words (tokenized), and sent for recognizing to the engine.

In the engine, the tokenized command is compared with various command
patterns, to match the proper one. Once a pattern is found, eventual numerical
parameters are evaluated, and the command executed. The commands can be
directed to specific objects, through specifying the proper internal identifier as
the first command word.

For example, if the command relates to rendering options, it will be sent by
the engine to the object responsible for the rendering, and therein interpreted
and executed.

In this manner, a common interface among different class objects allows
the communication of the user with the object responsible for a particular
task, eventually executed using polymorphism (a hierarchy of classes could
recognize the same command with the base class interpreter and execute them
differently).

For example, commands not handled by a derived engine class (in the
redefined command interpretation method) can be sent to the base class method
(with the proper C++ casting).

The engine method interpreting console commands are Dez3DEngine::-
executeLine(char* commandLine) for unprocessed commands and Dez3DEngine::-
command(int argc, char argv[...][...]) for the tokenized ones.

It is possible to process a whole text file as a sequence of commands, with
Dez3DEngine::executeScriptFile(char* fileName) .

In facts, in UGP this method is invoked at startup, and the commands create
the initial program environment.

The following is a commented fragment of such file :

49

...

...

#enables openGl culling

drawer set culling 1

#assigns the first texture index to data/textures/white.bmp

drawer load data/textures/white.bmp

#creates a sphere

meshcreator sphere radius 10 parallels 5 meridians 5 in 0 0 -10 color misc

#sets a first person shooter-like camera

camera fps

#sets a free moving camera

camera euler

#sets initial camera position

camera set pos 16 16 7

...

#spawns a 2d entity

new 2d

#sends a message to the entity

msg 2d load data/textures/smiley.bmp

...

50

Chapter 8

The rendering process

8.1 Camera

The various computations performed by a visualization system, can be orga-
nized in a sequence of stages, called conventionally graphics pipeline.

A typical graphics pipeline consists of:

1. transforming the objects from local to world coordinate space (modeling
transformation)

2. transforming the scene from world coordinate space to view space (view
transformation)

3. transforming the scene from view space to 3D screen space

4. displaying the resulting rasterized projection

Since OpenGL is a rendering library, only the first stage has to be executed
by the UGP software. The remaining three are executed by OpenGL, once the
proper commands are given to it. These commands specify the world geometry
in world coordinate space, and all of the complementary options to be applied
(colouring, texturing, shading, lightning, ecc..) during the rendering process.

8.1.1 The camera and the viewing system

One of the parameters to be given to the OpenGL subsystem is the viewing
system, composed, accordingly to the literature [WATT], by:

1. a view point

2. a view coordinate system

3. a view plane, containing the projection of the viewed scene

4. a view frustum, or volume containing the field of view

In UGP, the appropriate solution was to group the code concerning this in
a class, DezCamera.

51

view plane window

view space coordinate systemworld coordinates

x

y

z

camera

up(y)

view(z)

side(x)

Figure 8.1: World and view coordinate systems.

Such a class contains the routines to hold, modify, keep consistent the view-
ing system data, and communicate it to OpenGL when necessary, to obtain the
desired changes.

During the program execution, only one camera object at a time is active,
and receives update commands from the engine. These commands are initially
captured by the engine input system, interpreted, and sent to the camera.

Since inheritance is possible on this class, it is possible to obtain benefits
from polymorphism.

For example, a camera can be set to have constraints, like a limited amount
of rotation from a ’base’ view vector (like the eyes do with respect to the
head), or constraints on the rotation axis. Another possibility is to modify its
behaviour in time (e.g.: to continue proceeding forward, slowing, after a key is
unpressed, giving a gliding effect, like when navigating liquid surfaces), and
thus implement some simulative logic into it.

8.1.2 World to view space transformation

The view space coordinate system considers the camera (or point of view, or
eye) as the origin. The one described next is a basic one, similar to the one used
in the OpenGL library, although more complete (and complicated) viewing
systems exist, as the one used in PHIGS[WATT] standard.

Conventionally, the view direction (the one pointed by the eye) is considered
as z axis, the up direction as y, and the side direction as x (right).

The transformation required to obtain the view space coordinates from the
world space is called view transformation, and is represented by the matrix
Tview.

The Tview matrix is further obtainable as the product of a translation matrix
T with a rotation one R. Thus,



xview
yview
zview

1

 = Tview



xworld
yworld
zworld

1



where
Tview = RT

52

far plane

screen y

screen x

screen z (depth)

view plane

camera position

up

view

side

d
2h

f

Figure 8.2: The view frustum enclosed by the far and view plane.

T =



1 0 0 −camerax
0 1 0 −cameray
0 0 1 −cameraz
0 0 0 1

 R =



sidex sidey sidez 0
upx upy upz 0

viewx viewy viewz 0
0 0 0 1



The view, up, side, and camera position vectors are modified by the camera
object accordingly to user input and camera desired behaviour (even animation
is possible).

8.1.3 Perspective transformations and 3D screen space

When transforming the geometry into the view space, it is necessary to trans-
form it in a way that perspective effect is given. The farther the objects are, the
smaller they must appear. The whole visible space is contained in a frustum
(not an infinite pyramid, because of physical hardware limitations). The viewer
eye is located at the vertex of the frustum correspondent pyramid, whereas
the nearest frustum plane represents the screen on which the image has to be
projected, and the bottom represents the farthest location visible.

Moreover, since the perspective transformation projects the view space co-
ordinates to 3D screen coordinates, it should also care about the framebuffer
resolution and, generally, about the graphics hardware device.

The following transformation maps the scene onto a screen wide and tall h,
with a near plane distance d and far plane distance f :



xscreen
yscreen
zscreen

1

 = Tperspective



xview
yview
zview

1



53

T =



d
h 0 0 0
0 d

h 0 0
0 0 f

f−d
−d f
f−d

0 0 1 0



The perspective transformation keeps the z (depth) values in the z buffer, a
special buffer value associated to each pixel, which is used for depth information
of the drawn pixels. When a complex scene is rendered, more objects can cover
each other partially on the image, and the ones visible are the ones closer to the
viewer. Looking at the z value (in screen space, but in view space is similar) of a
new rendered pixel, the rendering system can determine its distance compared
to the last one rendered. If the new one is closer (lower z value), it overwrites the
old one. Otherwise, it is considered as a pixel ’behind’ the previously rendered
one, and is rejected.

Another important operation carried out in screen space is polygon clipping,
i.e.: ignoring the polygons projected outside the screen boundaries (in this case
±h), or drawing them partially when a portion projects outside.

8.1.4 Transformations and OpenGL

Since OpenGL keeps the rendering pipeline data as its state, we must use
its API to update it. Unfortunately, the matrices to be passed to OpenGL to
define the viewing system differs a little from the previously described ones.
This because all of the functions to describe the viewing system are several,
and during program execution certain are used more often than others. So,
according to the OpenGL specification, OpenGL associates a negative z axis to
the depth of the frustum, and thus the view transformation matrix looks like:

TviewOpenGL =



sidex sidey sidez 0
upx upy upz 0
−viewx −viewy −viewz 0

0 0 0 1



The perspective transformation:

TperspectiveOpenGL =



h
aspect 0 0 0

0 h 0 0
0 0 f+d

d− f −1

0 0 2 · f d
d− f 0


,where

aspect := screenWidth
screenHeight

h := cotangent f ovwidth
2

8.1.5 Two camera classes

For UGP, two camera classes where developed, DezCamera and DezGLQuake-
Camera, where the second one is a derived of the first one.

54

DezCamera is a free move camera with no orientation limits, and it has any
bond with the world coordinate system. It allows free rotation around its three
axis (view, up and side), and strafing along them. This can result in a somewhat
counter-intuitive way of moving: for example, if after veering left (rotating
around the view axis) one wants to turn right, the camera view vector will
rotate towards the right direction, in this case in the world z direction.

However, the camera simulates free space moving (like in open space or
flight).

To provide a more ’earthly’ way of moving, DezGLQuakeCamera behaves
similar to when moving on the earth, turning left and right rotating around the
world z axis, but proceeding forward in the view direction, like before. Also, a
’go up’ command will move the camera along the world z axis, instead of the
camera up axis. It is the camera used in the first person view simulators, and it
is based on two angles, θ as azimuth and φ as latitude (or elevation angle).

φ
view

up

side θ

Figure 8.3: Spherical coordinate system.

In this way,
view.x = cosφ · cosθ
view.y = cosφ · sinθ
view.z = sinφ
side.x = −cos(θ + π2) = sinθ
side.y = −sin(θ + π2) = −cosθ
side.z = 0
up = side × view
Additionally, a roll angle is used to rotate the up and side vectors around

the view vector, allowing to set the camera in all the positions the free move
camera allows, but in an easier way.

8.1.6 Communication with the engine

The engine communicates with the camera in a unidirectional way, with three
methods:

DezCamera::setStatus(· · ·)
DezCamera::updateStatus(void), and
DezCamera::lookAt(void)
The first method gives the camera the information about what to do in the

current time frame. The information is passed in form of a vectors of boolean
conditions corresponding to the elementary actions the camera can do (move
forward, backwards, sideways, turn left, veer, etc...).

The information is stored in the camera, and not executed until the call
of updateStatus(). The advantage of this strategy is the ease of logging of

55

the camera actions (by saving the individual action vectors). This allow for
the ’recording’ of the camera, for an eventual latter reproduction. However,
the solely storage of the action vectors is not enough to obtain a correctly
timed reproduction. This because the time frames have different length, not
predictable (the computer can execute other processes while executing the
program, and other factors make the current load unpredictable). So, to give
the user the illusion of constant moving or angular speed, the camera, at each
frame reads the time interval from the previous one, and perform its rotations
or moves proportionally to the interval length.

For a correct reproduction of a recorded sequence of actions, also the frame
interval lengths have to be recorded, and then the behaviour interpolated. This
is a trickier task, since the action vector is boolean, and some kind of integration
should be done ’reproducing’ the actions. The alternative solution is to store
the camera position and view vectors data, but it is much less flexible than the
previous.

The second method, DezCamera::updateStatus(), is called when the state is
passed with the previous method, and the camera should calculate the updated
values of its view system values. If called two times, the camera executes two
times the last actions (for example, if the command of rotating left was given,
the camera will continue rotating at a constant speed), until a setStatus(..) call
will change its desired behaviour (to stop it, for example).

Once the correct values for the viewing system are computed, they are
ready to be given to the rendering subsystem (OpenGL), and this occurs dur-
ing rendering time, in the Dez3DEngine::renderScene() method, with a call to
DezCamera::lookAt().

This method passes to OpenGL the following parameters: the camera po-
sition, view and up vectors. These are the parameters which are most likely to
change during the software execution, and can be passed directly (through the
use of the gluLookAt function), or indirectly, via the creation of the appropriate
matrix, and setting it as the current view transformation matrix.

Other parameters, like field of view (in radiants), minimum/maximum
depth of view, are modified with other methods in DezCamera methods, and
made effective when the perspective matrix is updated. This can be done di-
rectly (via a gluFrustum call) or by the creation of the appropriate matrix and
applying its effect with a glMultMatrix() function call.

In both cases (modelview and projection matrix), the update was implemented
with the creation/update of the appropriate matrix and applying it on the
OpenGL matrix stack [WRIGHT].

Once the projection and modelview matrices are correctly loaded, the ge-
ometry drawing commands can be executed.

8.2 2D Drawer

A Dez2DDrawer class object is responsible for drawing on-screen 2D graphics.
It makes use of OpenGL functions to write directly to the framebuffer device.

It is used for drawing images or lines on the top of the rendered 3D geometry.
To work correctly, the OpenGL two dimensional functions must be called with
the proper projection matrix already loaded.

56

The indicated projection for screen two dimensional drawing is ortho-
graphic projection The corresponding matrix is loadable (once the previous one
was saved on the matrix stack with glPushMatrix) with a call to gluOrtho2D,
which creates a matrix like the next one:

Tortho2DOpenGL =



2
r−l 0 0 − r+l

r−l
0 2

t−b 0 − t+b
t−b

0 0 2
f−n − f+n

f−n
0 0 0 1



where r, l denote coordinates for right and le f t clipping planes,
t, b denote coordinates for top and bottom clipping planes,
f , n denote f ar and near plane distances (recall figure 8.2).
the f and n parameters are respectively 1 and −1, because the z buffer algo-

rithm is ignored in 2D drawing. If glOrtho function was called (with different
parameters, of course), the f and n were adjustable to specify a proper ortho-
graphic projection of the whole scene.

The Dez2DDrawer class makes use of another class, DezGLFontDrawer,
which encloses on-screen font drawing functionalities.

8.2.1 Text drawing

The on screen drawing of text is a task done by a DezGLFontDrawer object,
member of Dez2DDrawer class.

Such an object has a set of methods for drawing strings on screen, in the
desired position and with the desired pixelmap font. Once created, an object is
bound to one type of font, which is contained in files located in the data/fonts
directory. The font name is indicated in the constructor method. At construc-
tion time, the object will base on that name to form the names of the 256
files corresponding to the character symbols. If the given filename was ”couri-
erNew”, it will load into memory files with names ”courierNew000.bmp”,
”courierNew001.bmp”, ..., ”courierNew255.bmp”.

Once loaded, each pixelmap drawing call is associated to an OpenGL display
list, in order to speed up subsequent calls. The display lists are generated
once with the glGenLists(256) command,which returns the offset to the call list
correspondent to each character.

When a string drawing method is invoked, it usually calls a sequence of
commands like:

glRasterPos2i(currentXPos,currentYPos),
glCallList(string[currentChar]+fontListOffset).
The different class methods simply differ in the values currentXPos, curren-

tYPos, based on the desired text position and spacing.
These are:
drawStringFromTopWithIndent(const char *s)const,
drawString(const char *s,const int xpos,const int ypos)const,
drawNumber(double n,const int xpos = 0,const int ypos = 0)const,
drawStringFromBottomWithIndent(const char *s)const,
drawStringFromTopWithIndentMultiLine(const char *s)const
All these methods are public and should be called with the proper (ortho-

graphic) projection matrix loaded, as described in the previous section.

57

Figure 8.4: OpenGL API hierarchy in Unix and Windows (from www.sgi.com).

8.3 3D Drawer and geometry drawing

The object responsible for on-screen drawing of the geometry is a Dez3DDrawer
class member of the engine. Its methods encapsulate all the drawing code,
which is based on the C routines provided by the OpenGL library.

UGP was intended to be as much cross-platform as possible, so the use of
OS specific resources is kept at the minimum (none). However, the OpenGL
subsystem needs to be initialized before use.

8.3.1 OpenGL initialization and portability

The OpenGL subsystem initialization is a strictly OS API dependent sequence.
This means that in order to be, effective the OpenGL routines, the window
managing software has to create a proper drawing context (data structures me-
diating access to the graphics device through the graphics device driver and
the windows manager).

The problem could be resolved by using conditional compilation in the
initialization section, but it would require the knowledge of the underlying
window systems (like X and Windows, for example). Besides initialization,
other conditional compilation sections would be necessary, for example, in the
window resizing code, buffer swapping, input handling and so on... in all tasks
where the window manager is usually involved.

The adopted solution to all of these problems, was to employ an intermediate
library as an interface between the OpenGL and the window management
system.

The employed library is called SDL (Simple DirectMedia Library), is written
in C, and is distributed accordingly to the GPLGnu Public License.

The SDL library is used for video initialization, input, and buffer swapping.
Its use in the implementation is described in 7.2;

8.3.2 Setting up OpenGL state

Assuming that a rendering context was created (as described in 7.2), before
the Dez3DDrawer object, the OpenGL state can be set accordingly to various
drawing options.

In the initOpenGL() method, called at initialization or whenever the drawing
status has to be reset, the two main OpenGL matrices (modelview and projection)

58

are set to identity and subsequently multiplied for the view transformation
matrix the first, and for the projection matrix the second.

This happens in the DezCamera code, at every frame for the view matrix (the
camera is assumed to be animated), and whenever needed for the projection
matrix (its parameters are less likely to change).

Other OpenGL status setting commands set/unset fog effect, texturing,
depth testing, face culling. All of these options can be switched on/off with
a proper glEnable/glDisable call, and some other functions. Drawing options
are usually allowed to change at run time with console command options.
These are described in the sample initialization file provided with UGP.

A fundamental initialization task is texture loading. For the maximum flex-
ibility, textures are loaded when introducing in the program an object using
them. Practically, Dez3DDrawer receives a loadTexture(filename) call, and loads
the texture specified in the filename file, if not already present. The method re-
turns an identifying index used for polygon texture display. The calling code
should use the returned number and assign it to the polygons having that
texture on.

When the drawer loads the texture, it uses a technique offered by opengl,
called calling list. Calling lists can help speeding up code execution since declare
operations that are likely to be replicated during rendering. Considering that
the program should declare to OpenGL every texture used by every polygon
with a proper function call, a speed up can be fundamental.

A call list is a sequence of OpenGL commands executed once and mem-
orized by OpenGL. The sequence is identified witn a number. The next time
that command sequence is needed, the program will communicate OpenGL
only that number in a call to glCallList(...). So, every time a texture has to be
specified before polygon drawing, the proper call list for that texture is called,
and, accordingly to OpenGL specification, if the OpenGL implementation is
well done, a performance benefit can be achieved.

The call list mechanism is suitable for a lot of OpenGL commands; however
in UGP they are used only for textures. This because call lists are static and if
the values of the data structures used when creating the list are modified, the
list performs the operations as the previous values were still valid. Since a call
list update at every geometry update would complicate a lot the code, besides
of tying it to the OpenGL rendering library, call lists are used only for texture
drawing and pixelmap displaying (in the two dimensional drawer class).

8.3.3 OpenGL drawing commands

UGP offers four drawing modes: vertex mode, edge mode, and textured/untextured
triangle modes.

The general drawing commands in OpenGL should be placed in the portion
of code between a glBegin(GL enum mode) and a glEnd() call. The mode specifies
the geometrical object to draw (an edge, lone vertices, triangles, triangle strips,
and so on...). The commands appearing in that code could specify vertex colour,
texture coordinate, lightning options, and position.

For example,
glBegin(GL TRIANGLES)
glTexCoord2f(0.0 , 1.0)

59

glTexImage2D(GL TEXTURE 2D,0,3,256,256,0,GL RGB,GL UNSIGNED BYTE,-
aTexture)

glColor3ub(255,255,255)
glVertex3d(0.0 , 0.0 , 1.0)
...
glEnd()
specifies the drawing of a textured and coloured triangle (although only the

first vertex specifying command is shown, another two are necessary).
The methods responsible for drawing the geometry are drawTexturedTriangles-

(), drawTriangles(), drawEdges(), drawVertexes(), and the analogous drawMesh-
TexturedTriangles(Mesh*m), drawMeshTriangles(Mesh*m), drawMeshEdges(Mesh*m)-
, drawMeshVertexes(Mesh*m), which differ from the previous ones in the fact they
do not access to internal engine structures, and draw only one mesh object a
time. The forementioned drawing methods are not directly accessible by the
other classes (the methods are declared protected), because this would mean less
central control from the engine. Thus, depending on the current drawing mode,
the current drawing methods are used. They are accessed through the render-
Scene() and renderMesh(Mesh*m) methods, which contain a function pointer set
to the proper drawer method.

Since the renderScene() method is invoked by Dez3DEngine::renderScene(),
and all rendering options are managed by the Dez3DDrawer class object, the
Dez3DEngine has the minimum information on the graphical options (only the
video mode, because it has to be set before OpenGL is available).

60

Chapter 9

Entities

Entities are intended to be ’custom’ class objects , capable of having various,
customized behaviour. For example, UGP uses a tissue-like entity, Dez3DTissue
to simulate skin deformation and needle penetration. Another entity, DezRobo-
tArmDH, behaves like a manipulator, controlled by arrow keys.

9.1 Dez3DEntity, a common base class for entities

The entity classes are derived from the Dez3DEntity class, an abstract class
which offers the basic interface common to all of them.

The interface specifies the methods the engine will call to use the entity, and
the service methods every entity will be able to use.

9.1.1 Entity flags

At construction time, each entity is required to set its flags, which specify its
behaviour and desired services from the engine. As soon as the engine adds an
entity in its entity container, the flags are read and the engine decides how to
make use of the entity.

The flag mechanism is implemented as a bitfield in the Dez3DEntity class.
The following flag values are possible, and could (should) be combined:

1. UPDATEABLE, the state of the entity has to change at every frame;

2. TAKESINPUT, the entity reads the user input and behaves accordingly;

3. DRAWABLE, the entity geometry has to be drawn at each frame;

4. DRAWABLE2D, when the entity is selected, its text/pixelmaps are drawn
at each frame;

According to the flags, the engine stores a pointer to the entity into an appropri-
ate list, and each frame, following a fixed sequence defined by the engine (in the
base class), certain entity methods are executed.These methods are associated
to the declared flags.

61

9.1.2 Entity geometry and text drawing

In accordance to DRAWABLE flag, the virtual draw() method is called when the
engine renders the geometry (in the Dez3DEngine::renderScene() method).

If not redefined, the Dez3DEntity::draw() method is called, and by default
draws the contents of the Dez3DEntity::meshData array, if any.

Otherwise, an entity can place custom drawing code into the draw() method,
but it is a more risky operation, since incorrect OpenGL operations could
influence subsequent drawing instructions.

The draw() method is declared friend of the Dez3DDrawer class, so it can
refer directly to its drawing methods concerning meshes, edges, points, and the
geometry will be drawn accordingly to the current drawer settings.

The DRAWABLE2D flag specifies a slightly different behaviour, since the
correspondent commands draw rendered text and pixelmaps directly into the
frame buffer, on the top of the rendered geometry, and are executed only if the
entity is currently selected.

The corresponding interface methods are draw2D() and printBuffers(). They
are also called in Dez3DEngine::renderScene(), after the geometry is loaded and
the orthographic projection matrix is loaded in the OpenGL matrix stack.

The draw2D() method is declared friend of the drawing classes, so it can
refer directly to the drawing methods concerning text and pixelmaps.

9.1.3 Entity update and input

The UPDATEABLE flag informs the engine to call the virtual performAction()
method on that entity at every frame, from the virtual Dez3DEngine::update()
abstract method.

Finally, the TAKESINPUT flag informs the engine that the entity can accept
user input, in form of information on the pressed keys. However, if the read
input code was in the entity, it had to contain system specific calls or SDL (see
sections 7.2,6.1) calls, and this would break the clarity rules, aside from creating
a chaotic situation prone to bugs.

So the choice made was to leave the input capture task to the proper engine
derived class (like SDLEngine), and to send it, when necessary, to the entity. In
order to receive user input, the entity must be selected as current by the engine,
and the engine must be in entity mode. The engine entity mode is obtainable
when the user selects the desired entity and gives the proper engine command
to ’control’ it.

The key combination to quit the entity mode is recognized by the engine,
so there is no chance for the user to get stuck with a bad programmed entity.

In the user commands section there is the list with the aforementioned
commands.

9.2 Some examples with pictures

This section introduces to some of the entities instantiable in UGP.

62

Figure 9.1: DezMenger objects, representing Menger sponges of order 1,2,3, and
through the axial ’hole’ of an order 1 one.

9.2.1 Menger sponge

The Menger Sponge, on figure 9.1 is a fractal construction, obtained, at each
iteration, from a solid cube by first splitting it in 27 cubes, each one wide one
third of the original. The 7 axial (on the 3 axis) cubes are removed from the
original 27, thus ’carving’ axially in it. At each iteration of ’carving’, each of the
20 resulting cubes is split and ’carved’, in turn.

An intersting fact about this solid is that, given V0 and A0 as the volume and
surface area of an initial cube, the following formulas stay for the ith iteration
of the ’carving’ process:

Vi =
(20

27

)i
V0 ⇒ lim

i→∞
Vi = 0

Ai =
(4

3

)i
A0 ⇒ lim

i→∞Ai = ∞

It is troublesome to imagine a solid with infinite surface and with no volume!
The command to be given for a menger sponge object is new menger 3.

9.2.2 Bouncing sphere

It is also possible to see a sphere bouncing on the z = 0 plane. The spawn
command is new bouncing.

Figure 9.2 gives an example.

63

Figure 9.2: A bouncing ball.

9.2.3 Shootable

Typing the command new shootable, a sphere is spawned, and can be used as
a target for ’shooting’. When the user is nearby and, once selected it presses s,
the sphere changes colour if hit as shown on figure 9.3.

9.2.4 Tissue

Already described informally in section 3.3.1, the DezTissue class represents a
systolic mesh modifiable by a user controlled needle.

The spawn command is new tissue TEXTURE, where TEXTURE is the file-
name, or the number of the preferred ’skin’ texture 1.

Once selected the object, the tissue needle is controllable with the following
keys:

UP ARROW pushes the needle along x
DOWN ARROW pushes the needle along −x
RIGHT ARROW pushes the needle along y
LEFT ARROW pushes the needle along −y
S pushes the needle along z
X pushes the needle along −z
P pushes the needle deeper
R releases the needle

1For more information on texture support, see section 8.3.2.

64

Figure 9.3: A DezShootable class object : to be selected, selected, hit, missed.

H displays some help
M the needle penetrates faster, when keys are pressed

L the needle penetrates slower, when keys are pressed
Figure 3.3 shows a instantiated DezTissue object.

9.2.5 The robot arm

Already described informally in section 3.2.1, the Dez3dDezRobotArmDH class
represents a multi link manipulator.

The constructive parameters are a Denavit-Hartenberg table theta,d,l,alpha
and some strings, contained in some file, structured as the following:

{

name popeye

linksCount 4

}

#link # theta d l alpha

{

link 1 0.3 3 2 0

meshcreator orientedcylinder .1

}

{

link 2 1.6 0 1 3.1414

meshcreator orientedcylinder .1

}

{

link 3 0 1 0 0

65

meshcreator orientedcylinder .1

}

{

link 4 1 .0003 0.5 0

meshcreator orientedcylinder .1

}

The above text encodes a manipulator looking as the one in figure 3.2.
The spawn command is new robotfile FILE, where FILE contains the above text.
The control commands are:
LEFT ARROW the current link increases its theta value.

RIGHT ARROW the current link decreases its theta value.

TAB changes the currently selected link

9.2.6 2D Image Displayer
The 2D image processing procedures described in sections 4.3, 4.4, were implemented
in an entity class called Dez3DImageDisplayer.

The following screenshots were taken by first spawning a Dez3DImageDisplayer class
object, and then giving specific commands. Figure 9.4 shows the sample image and its

Figure 9.4: Our sample image and its histogram.

histograms, displayed in UGP, issuing the commands:

msg 2d load babcia.bmp

msg 2d --drawHistogram screenshotBabciahistogram.bmp

The images in 9.5 were obtained, respectively, issuing two times the first command
and one time the second command:

msg 2d --blur 16 0 0

msg 2d --edges 0.14

The resized images in 9.6 were obtained with:

msg 2d --resize 360 700

msg 2d --resize 3000 1400

66

Figure 9.5: Blur and edge revealing operations.

Figure 9.6: Resizing of images in UGP.

Figure 9.7: Contrast enhancing and the concatenation of partial desatura-
tion,contrast and saturation.

The left image in 9.7 enhances the contrast of the original image, with the command:

msg 2d --contrast .9

The right one was obtained with the combination:

msg 2d --desaturate 0.8

msg 2d --contrast 1

msg 2d --saturation 1

Figure 9.8 shows the box-pixelated version of our image:

msg 2d --boxPixelate 10 10 3 3 2

67

Figure 9.8: The sample image after box pixelating and negative effects.

and a 20% blend of the original image with the negative version.

msg 2d --negative 0.8

68

Chapter 10

MeshCreator class as a shape
factory

10.1 A primitive shape creator
The Mesh class has a great deal of opportunity of representing diverse triangle meshes,
but there is the problem of creating and specifying meshes!

The employed multiple representation (triangles, edges, vertices), is practical for
rendering purposes, but as any triangle mesh representation suffers of the lack of creation
ease. In facts, the simplest mesh available, the tetrahedron, has the following pointer
schema :

V1

V2

V3

V4

E1

E2

E4
E5

E3

E6

T3(rear face)

T2

T1

T4
E3

E6

E4

E:

E2

E1

E5

V:

V4

V3

V2

V1

T: T1 T2 T3 T4

Figure 10.1: Structure of pointer interconnections for a tetrahedron.

There are totally 48 interconnections, for a structure with only 4 vertices!
Being evident that manual editing of meshes a difficult task, the alternative solution

for the creation of more complicated meshes is the aggregation (or even merging, altough
not implemented) of primitive shape meshes.

So, the primitive shapes are created once in the methods of a MeshCreator class
object, and modified as needed. For this, the stateless MeshCreator class offers a method
accepting string commands for the creation of meshes. The string is parsed then, and
the appropriate methods of MeshCreator are invoked for the creation and modifying of
the desired mesh.

10.2 The MeshCreator command string
Recognized commands have the format :

69

SHAPE PARLIST [in X Y Z] [bounded XBMIN YBMIN ZBMIN XBMAX YBMAX
ZBMAX] [rotated XR YR ZR] [color <R G B> | random | misc] [reversed] [texture TEX-
TUREINDEX]

The bracketed arguments are optional, and can appear in any order. The lowercase
words are keywords identifying each argument option.The angular brackets group the
contained text.

The replacement rules for the variables (uppercase text) are:
SHAPE:= cube | sphere | arrow | flatSystolicMesh | terrain | disc | leaf | cylinder |moebiusdisc

| box
X,Y,Z,XR,YR,ZR,XBMIN,YBMIN,ZBMIN,XBMAX,YBMAX,ZBMAX:= a real
TEXTUREINDEX:= a positive integer, or a file path1.
R,G,B:= a real, in the [0,1] interval
The PARLIST string is specific to each SHAPE, and is as follows:
for arrow : XDIR YDIR XDIR
for sphere : [radius R] [parallels P] [meridians M]
for flatSystolicMesh : [cellSize CS] [xCells XC] [yCells YC]
for flatSystolicMesh : [cellSize CS] [xCells XC] [yCells YC]
for terrain : [cellSize CS] [xCells XC] [yCells YC] heightmap HFILENAME colormap

CFILENAME
for cylinder : [verticalSubdivisions VS] [circularSubdivisions CS] [radius R] [height H]
for moebiusdisc : [radialSubdivisions RS] [circularSubdivisions CS] [minRadius MINR]

[maxRadius MAXR]
for moebiusdisc : [radialSubdivisions RS] [circularSubdivisions CS] [minRadius MINR]

[maxRadius MAXR]
for box : XMIN YMIN ZMIN XMAX YMAX ZMAX
for orientedcylinder : XMIN YMIN ZMIN XMAX YMAX ZMAX RADIUS
where radius and position information are real numbers, all other are integers, except

string filenames.

1Altough in this case the texture name string will be read and interpreted by the engine, because
MeshCreator accepts only an integer as argument (this because MeshCreator has not texture managing
functions really).

70

Chapter 11

UGP usage

UGPhas three interactive operating modes: normal, console, and entity. The first is used
to move around in the three dimensional environment. The second is used to enter and
execute textual console commands. The third is used to control interactively an entity.

11.1 Mode switching commands

Tab NORMAL MODE⇐⇒ CONSOLE MODE

ESCAPE ANY MODE =⇒NORMAL MODE

CTRL S NORMAL MODE⇐⇒ ENTITY MODE (current entity, if any)

CTRL TAB Cycle through the entities, to select the current

11.2 Normal mode commands
A Roll left

D Roll right

S Move upwards

X Move downwards

Z Strafe left

C Strafe right

CTRL P Pause

H Help

Q Stabilize camera view

R Reset camera view

M Toggle mouse

F show FPS

F1 Toggle texture drawing

F2 Increase camera FOV

71

F3 Decrease camera FOV

F5 Increase camera moving velocity

F6 Decrease camera moving velocity

F7 Increase camera rotation speed

F8 Decrease camera rotation speed

F9 Toggle fog

F10 Toggle vertex/edge drawing

F11 Toggle edge/triangle drawing

F12 Screenshot in the current directory (bmp format)

UP ARROW |MOUSE RIGHT BUTTON Move forward

DOWN ARROW |MOUSE LEFT BUTTON Move backward

LEFT ARROW |MOUSE LEFT Move left

RIGHT ARROW |MOUSE RIGHT Move right

PAGE UP |MOUSE DOWN Look up

PAGE DOWN |MOUSE UP Look down

CTRL TAB Cycle through the current entities

CTRL S Select the current entity (going into ENTITY MODE)

CTRL Q Quit the program

CTRL P Pause the program

CTRL R Reset the program

11.3 Console mode commands
ENTER Submit command

UP ARROW Previously executed command

DOWN ARROW Next executed command

CTRL C Copy command buffer

CTRL X Cut command buffer

CTRL V Paste command buffer

CTRL U Clear command buffer

BACKSPACE Clear last character in command buffer

Escape | TAB Exit command console mode

ANY CHARACTER KEY Add typed charater to command buffer

72

Bibliography

[WATT] Alan Watt. 3D Computer Graphics, third edition. Addison Wesley 2000

[WRIGHT] Richard S.Wright Jr,Michael Sweet. OpenGL. Waite Group Press 1999 (Polish
edition by Helion, 1999)

[SGI] various authors. OpenGL Programming Guide (better known as Red Book).
www.sgi.com

[SDL] Sam Lantiga. SDL (Simple DirectMedia Layer) User Guide. http://www.libsdl-
.org/

[LGP] John Hall. Programming Linux Games. http://www.overcode.net/ overcode-
/writing/plg 2001

[FOLEY] J.D.Foley Et Al. Introduction to Computer Graphics. Addison Wesley Long-
man 1994

[ZONNEV] F.W.Zonneweld. Digital visualization of the medical reality : a glimpse of
the future. http://www.medical.philips.com/main/news/assets/docs/medicamundi-
/mm vol40 no2/zonnev.pdf

[GPG1] Dante Treglia. Game Programing Gems 1.Charles River Media 2001 (Polish
edition by Helion, 2002)

[GPG2] Dante Treglia. Game Programing Gems 2.Charles River Media 2001 (Polish
edition by Helion, 2002)

[GPG3] Dante Treglia. Game Programing Gems 3.Charles River Media 2002 (Polish
edition by Helion, 2003)

[GT] Various code from http://gametutorials.com

[GD2007] Frdric Patin. An Introduction To Digital Image Processing. http://www-
.gamedev.net/reference/articles/article2007.asp

[MCCM] Ada Puglisi. The music of the colour, the colour of the music. http://www.sifi.it-
/en/rivista/rubriche/Articolo%20sinestesia/Sinestesia.htm

[KW] Piera Giovanna Tordella. Kandinskij. Elemond Arte, 1992

73

Index

Dez3DImageDisplayer, 66
Dez3DTissue, 61
Dez3dDezRobotArmDH, 65
DezRobotArmDH, 61
DezTissue, 64
DezCamera, 54
Dez3DCommandConsole, 49
Dez2DPoint class, 44
Dez3DDrawer, 58
Dez3DEngine, 47
Dez3DEntity, 61
Mesh, 69
MeshCreator, 69
Mesh class, 44
Vector3D<X> template class, 44
Vector3D class, 44
VertexData class, 44
OpenGL, 48, 54, 58
OpenGLinitialization, 48
OpenGL library, 45
OpenGL matrices, 54
UGP classes, 43
2D drawer, 56
3D drawer, 58
3D screen space, 53

back face, 35
blackness, 25
blur, 26
bouncing sphere, 63
brightness, 25

camera, 51
chroma, 22
code documentation, 45
colour, 21
colour space, 22
commands, 64
components of UGP, 43
containment, 34
contrast, 28
convexity, 38
culling, 35

Denavit-Hartenberg table, 65

desaturation, 24
despeckle, 29
Dez2DDrawer, 57
Dez3DEngine::command, 49
Dez3DEngine::executeScriptFile, 49
DezCamera::lookAt, 55, 56
DezCamera::setStatus, 55
DezCamera::updateStatus, 55
downsampling, 32

edge, 37
engine, 47
entities, 61
entity flag, 61
event, 48

front face, 35

gaussian blur, 26
glBegin, 59
glMultMatrix, 56
gluOrtho2D, 57
graphics pipeline, 51

HSV, 22
hue, 22
hull, 36

image processing, 23, 24, 66
initialization file, 50, 65, 69
input, 48
intersection, 35
inverted edge, 39

kandinsky, 21

logical pointer, 39

matrix convolution, 26
Menger sponge, 63
mesh, 36
mesh data structure, 39
mesh properties, 37
Munsell, 22

negative, 24

74

non punctual transformations, 26

OpenGL API hierarchy, 58

perspective transformation, 53
plane, 33
point, 33
programming style, 42
punctual transformations, 24

ray, 35
rendering, 51, 56
resampling, 31
resizing, 31
RGB colour space, 22
RGB cube, 23

saturation, 24
SDL, 42, 45, 47, 48
SDL library, 45
SDL Event, 48
SDL SetVideoMode, 48
SDL VideoModeOK, 48
SDL WM GrabInput, 48
sdlengine, 47
shapes, 69
sharpen, 30
straight, 33

Tartaglia-Pascal triangle, 28
terrain representation, 14
tetrahedron, 39
text drawing, 57
texture, 70
triangle, 37
triangle splitting, 38

upsampling, 31

view space, 52
viewing system, 51
virtual, 49

whiteness, 25
wireframe, 40

75

