## **Fluidodinamica Numerica**

#### **Prof. Roberto Verzicco**

roberto.verzicco@uniroma2.it

**Dr. Francesco Viola** francesco.viola@uniroma2.it

# **Computational Engineering**

• Un insieme di discipline complementari utilizzate per costruire modelli predittivi



La "computational engineering" è molto sviluppata in alcuni campi (aerospace, automotive) e si basa sull'analisi numerica

#### **The Navier-Stokes equations**

The Navier-Stokes equations govern the motion of fluids and can be seen as Newton's second law of motion for fluids. In the case of a compressible Newtonian fluid, this yields

$$\nabla \cdot \mathbf{u} = 0$$
  
$$\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$$

 $\mathbf{u}$  velocity

p pressure



#### **The Navier-Stokes equations**

The Navier-Stokes equations govern the motion of fluids and can be seen as Newton's second law of motion for fluids. In the case of a compressible Newtonian fluid, this yields



 ${f u}$  velocity

p pressure



# The Navier-Stokes equations in *Aeronautics*











# The Navier-Stokes equations in *Energy Harvesting*





# The Navier-Stokes equations in *Car Aerodynamics*







### The Navier-Stokes equations in *Sports*













France v Brazil, Tournol de France 3 June 1997

## The Navier-Stokes equations in *Geophysics*









# The Navier-Stokes equations in *Atmospheric flows*



#### Navier-Stokes equations govern *turbulence* as well





#### **Solution of the Navier-Stokes equations find several applications**

 $\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$ 



 $\nabla \cdot \mathbf{u} = 0$ 











#### ...however only few analytical solutions are known

$$\nabla \cdot \mathbf{u} = 0$$
$$\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$$





#### Many flows of interest can not be solved analytically

 $\neq$ 

#### **Ideal flows**



**Real flows** 





# **Applications of CFD**

| Method       | Advantages                                                            | Disadvantages                                                          |
|--------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| Experimental | 1. More realistic                                                     | 1. Need for instrumentation                                            |
|              | 2. Allows "complex" problems                                          | 2. Scale effects                                                       |
|              |                                                                       | <ol> <li>Difficulty in measurements &amp;<br/>perturbations</li> </ol> |
|              |                                                                       | 4. Operational costs                                                   |
| Theoretical  | 1. Simple information                                                 | 1. Limited to simple cases                                             |
|              | 2. General validity                                                   | 2. Typically linear problems                                           |
|              | <ol> <li>Understanding and interpretation<br/>of phenomena</li> </ol> |                                                                        |
| CFD          | 1. Not limited to linear cases                                        | 1. Errors: discretization, truncation                                  |
|              | 2. Allows "complex" problems                                          | 2. Difficulty in boundary conditions                                   |
|              | 3. Stationary and non-stationary                                      | <ol> <li>Simplifications needed</li> </ol>                             |
|              | 4. Relatively affordable cost                                         | <ol> <li>Time for set-up &amp; run</li> </ol>                          |
|              | 5. Integration in the project chain                                   | 5. Time for post-processing                                            |
|              |                                                                       | 6. Difficult interpretation                                            |

# **Applications of CFD**



Architecture

Environment



from Reynaldo J. Gomez III, NASA

CFD conditions:  $M_{\infty} = 2.50$ ,  $\alpha = 2.03^{\circ}$ ,  $\beta = 0.00^{\circ}$ , Reynolds  $\# = 2.50 \times 10^6$ /ft, IB elevon = 4.07°, OB elevon = -4.39° WTT conditions:  $M_{\infty} = 2.50$ ,  $\alpha = 2.03^{\circ}$ ,  $\beta = 0.00^{\circ}$ , Reynolds  $\# = 2.50 \times 10^6$ /ft, IB elevon = 4.07°, OB elevon = -4.39°



AIAA 2004-2226

from Reynaldo J. Gomez III, NASA



from Reynaldo J. Gomez III, NASA



from Reynaldo J. Gomez III, NASA



Three types of systematic errors:

- 1. Model error: difference between the real problem and the chosen equations
- 2. Discretization error: difference between the exact solution of the model equations and the exact solution of the discretized system
- 3. Convergence error: difference between the exact solution of the discretized system and the solution obtained with a given mesh



Three types of systematic errors:

- 1. Model error: difference between the real problem and the chosen equations
- 2. Discretization error: difference between the exact solution of the model equations and the exact solution of the discretized system
- 3. Convergence error: difference between the exact solution of the discretized system and the solution obtained with a given mesh



 $\nabla \cdot \mathbf{u} = 0$ 

$$\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$$

air dynamic viscosity



Three types of systematic errors:

- 1. Model error: difference between the real problem and the chosen equations
- 2. Discretization error: difference between the exact solution of the model equations and the exact solution of the discretized system
- 3. Convergence error: difference between the exact solution of the discretized system and the solution obtained with a given mesh



Three types of systematic errors:

- 1. Model error: difference between the real problem and the chosen equations
- 2. Discretization error: difference between the exact solution of the model equations and the exact solution of the discretized system
- 3. Convergence error: difference between the exact solution of the discretized system and the solution obtained with a given mesh



## **CFD: key ingredients**

Target problem (flow around a racing car)





Mathematical model (Navier-Stokes equations, RANS, heat equation)

Discretization method
 (finite differences, finite elements, finite volumes)

Computational mesh (structured, unstructured, curvilinear)

Time integration method (implicit, explicit)

Solve linear systems of equations

Solve nonlinear systems of equations

Post-processing (e.g. find Cx—> integration)

# This course

### **Numerical mathematics**

- Number system and errors
- Roots of equations
- System of linear equations
- Interpolation
- The method of least squares
- Integration
- Time integration of ODEs

# Numerical solution of PDEs

- The finite difference method FD
- Solution of the steady heat equations (linear and nonlinear)
- Solution of the unsteady heat equations
- Solution of the Navier-Stokes eq.

#### **CFD** for applications

- The finite element method (FEM)
- The finite volume method (FVM)
- Introduction to RANS and LES
- Commercial software using finite differences
- Library for FEM

#### **Hand-on sessions**

#### https://docs.ccd.uniroma2.it/matlab/



Per poter utilizzare i servizi messi a disposizione degli studenti di Tor Vergata relativi a MatLab è necessario aver già attivato l'indirizzo di posta elettronica fornito dall'Ateneo.

Se non si sa come attivare il proprio indirizzo mail guardare la **guida rel**a **tiva**.

L'Ateneo mette a disposizione di tutti gli studenti e di tutto il personale la possibilità di installare il software MatLab, per fini didattici e di ricerca. Ogni docente, ricercatore e studente può iscriversi ai corsi online della M TLAB Academy, attraverso la **pagina dedicata** all'Università degli Studi d Roma "Tor Vergata".

Per attivare il servizio è sufficiente collegarsi al sito <u>//it.mathworks.-</u> <u>com/mwaccount/</u> e creare il proprio Account.



A questo punto basterà seguire le istruzioni e, quando richiesto, inserire il codice di attivazione presente sulla pagina personale **Delphi**.



| ESAME DI LAUREA | Gestione Domanda di Laurea                                                                     |  |
|-----------------|------------------------------------------------------------------------------------------------|--|
| ALTRI SERVIZI   | Attivazione altri servizi                                                                      |  |
|                 | Domanda benefici per merito i termini previsti dal bando per poter nchiedere il beneficio sono |  |

| UNIVERSITÀ DEG | ILI STUDI DI ROMA                                                                                                                                                 | A TOR VERGATA |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Homepage       | Area Docenti Area Studenti                                                                                                                                        | Delphi        |  |  |
| AREA STUDENTI  |                                                                                                                                                                   |               |  |  |
|                | SERVIZI FORNITI                                                                                                                                                   |               |  |  |
|                | <ul> <li>Attivazione Microsoft Office365<br/>(e-mail, network-disk, etc.)<br/>Per maggiori informazioni clicca QUI</li> <li>Codice Attivazione MathLab</li> </ul> |               |  |  |
|                | INDIETRO                                                                                                                                                          |               |  |  |

Per altre informazioni, documentazione Mathworks, risorse gratuite Mathworks e ulteriori guide visitare il sito dell'Università nella **pagina dedicata**.

Per problemi, assistenza tecnica o domande rivolgersi a: *support@mathworks.it*.

Hand-on sessions



Octave

or others...

#### Esame

#### 1. Svolgimento progetto

+

#### 2. Orale:

Domande sul programma

Presentazione del progetto