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1950

Turing's Learning Machine

1951 First Neural Network Machine
1952 Machines Playing Checkers
1957 | Discovery Perceptron

1963 | Achievement Machines Playing Tic-Tac-Toe

1967 Nearest Neighbor

1969 Limitations of Neural Networks
1970 Automatic Differentation (Backpropagation)
1972 | Discovery :I'E'r_rp frequency—inverse document frequency (TF-
1979 Stanford Cart

1980 | Discovery Neocognitron

1981 Explanation Based Learning
1982 | Discovery Recurrent Neural Network

1985 NetTalk

1986 | Discovery Backpropagation

1989 | Discovery Reinforcement Learning

1992 | Achievement Machines Playing Backgammon
1995 | Discovery Random Forest Algorithm

1995 | Discovery Support Vector Machines

1997 | Achievement IBM Deep Blue Beats Kasparov
1997 | Discovery LSTM

1998 MNIST database

2002 Torch Machine Learning Library
2006 The Netflix Prize

2009 | Achievement ImageNet

2010 Kaggle Competition

2011 | Achievement Beating Humans in Jeopardy

2012 | Achievement Recognizing Cats on YouTube
2014 Leap in Face Recognition
2014 Siby!

2016 | Achievement Beating Humans in Go
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Defining learning broadly, to include any computer program that improves
its performance at some task through experience.

Definition:

A computer program 1s said to learn from experience E with respect
to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience K.



You have to follow the data...

1) Machine learning uses a variety of algorithms that iteratively learn from
data to improve, describe data, and predict outcomes.

2) As data 1s constantly added, the machine learning models ensure that the
solution 1s constantly updated.

3) If you use the most appropriate and constantly changing data sources in
the context of machine learning, you have the opportunity to predict the
future!



You have to follow the data...

The ability to distribute compute processing across clusters of computers has
dramatically improved the ability to analyze complex data in record time

Defining Big Data

Big data 1s any kind of data source that has at least one of four shared
characteristics:

» Extremely large Volumes of data
» The ability to move that data at a high Velocity of speed
» An ever-expanding Variety of data sources

» Veracity so that data sources truly represent truth



When Do We Need Machine Learning?

The problem’s complexity and the need for adaptivity.

Tasks That Are Too Complex to Program.
Tasks Performed by Animals/Humans

Examples of such tasks include driving, speech recognition, and image understanding.

Tasks beyond Human Capabilities:

Analysis of very large and complex data sets: astronomical data, turning medical archives
into medical knowledge, weather prediction, analysis of genomic data, Web search
engines, and electronic commerce.

Adaptivity. One limiting feature of programmed tools is their rigidity — once the program has
been written down and installed, it stays unchanged. However, many tasks change over time or
from one user to another. Machine learning tools — programs whose behavior adapts to their
input data — offer a solution to such issues; they are, by nature, adaptive to changes in the
environment they interact with.
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Reasoning helps fill in the blanks when there is incomplete data. Machine reasoning helps make sense of connected data.
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NLP is the ability to train computers to understand both written text and human speech. NLP techniques are needed to capture the meaning
of unstructured text from documents or communication from the user.
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Reasoning helps fill in the blanks when there is incomplete data. Machine reasoning helps make sense of connected data.

NLP is the abflity to train computers to understand both written text and human speech. NLP techniques are needed to capture the meaning
of unstructyfred text from documents or communication from the user.

Planning: Automated planning is the ability for an intelligent system to act autonomously and to construct a sequence of actions to reach a

goal.
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Supervised learning typically begins with an established set of data and a certain understanding of how that data is
classified.

Unsupervised learning is best suited when the problem requires a massive amount of data that is unlabeled.

Reinforcement learning is a behavioral learning model. The algorithm receives feedback from the analysis of the data so
the user 1s guided to the best outcome. Reinforcement learning differs from other types of supervised learning because the
system 1sn’t trained with the sample data set but through trial and error.

Deep learning is a specific method of machine learning that incorporates neural networks in successive layers in order to
learn from data in an iterative manner. Deep learning is especially useful when you’re trying to learn patterns from
unstructured data.



- Unsupervised learning - Reinforcement learning
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¢ Reinforcement learning

- Supervised learning is widely used in classification, approximation, control, modeling and
identification, signal processing, and optimization.
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¢ Reinforcement learning

- Supervised learning is widely used in classification, approximation, control, modeling and
identification, signal processing, and optimization.

- Unsupervised learning schemes are mainly used for clustering, vector quantization, feature
extraction, signal coding, and data analysis.
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Supervised learning is widely used in classification, approximation, control, modeling and
identification, signal processing, and optimization.

Unsupervised learning schemes are mainly used for clustering, vector quantization, feature
extraction, signal coding, and data analysis.

Reinforcement learning is usually used in control and artificial intelligence.
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¢ Reinforcement learning

Supervised learning is widely used in classification, approximation, control, modeling and
identification, signal processing, and optimization.

Unsupervised learning schemes are mainly used for clustering, vector quantization, feature
extraction, signal coding, and data analysis.
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Reinforcement learning is usually used in control and artificial intelligence.
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A Gentle Start

Imagine you have just arrived in some small Pacific island. You soon find out
that papayas are a significant ingredient in the local diet. However, you have
never before tasted papayas. You have to learn how to predict whether a papaya
you see 1n the market 1s tasty or not.

First, you need to decide which features of a papaya your prediction should be based on

TN

papaya’s color papaya’s softness



A Formal Model — The Statistical Learning Framework

Domain set: An arbitrary set, X. This is the set of objects that we may wish to label. For example, in the papaya learning

problem mentioned before, the domain set will be the set of all papayas. Usually, these domain points will be represented
by a vector of features (like the papaya’s color and softness).

Label set: For our current discussion, we will restrict the label set to be a two-element set, usually {0,1} or {—-1,+1}.LetY

denote our set of possible labels. For our papayas example, let Y be {0, 1}, where 1 represents being tasty and O stands for
being not-tasty.

Training data: S=((x1,y1)...(xm,ym)) 1s a finite sequence of pairs in X xY: that is, a sequence of labeled domain points.

The learner’s output: The learner is requested to output a prediction rule,
h: X—=Y

This function is also called a predictor, a hypothesis, or a classifier. We use the notation A(S) to denote the hypothesis that
a learning algorithm, A, returns upon receiving the training sequence S.

The choice of which functions to include in H usually depends on our intuition about the
problem of interest

A simple data-generation model we assume that there is some “correct” labeling function,
f: X — Y, and that yi = f(xi) for all i

The labeling function is unknown to the learner. In fact, this is just what the learner is trying to figure out.



A Formal Model — The Statistical Learning Framework

Measures of success: the error of h is the probability to draw a random instance X, according to the
distribution D, such that h(x) does not equal f(x)

def

Lpsh) € P [h(z) # f(2)] € D{x: h(z) # f(z)}).

x~D

A learning algorithm receives as input a training set S, sampled from an
unknown distribution D and labeled by some target function f, and should
output a predictor hs : X — Y (the subscript S emphasizes the fact that the

output predictor depends on §).

The goal of the algorithm is to find hs that minimizes the error with respect to
the unknown D and f.



A Formal Model — The Statistical Learning Framework

Empirical Risk Minimization: Since the learner does not know what D and f are, the true error is
not directly available to the learner.

A useful notion of error that can be calculated by the learner is the training error — the error the
classifier incurs over the training sample:

def |17 € [m] : h(zi) 7 yi}|

m

Ls(h)

where [m] = {1,....m}.

The terms empirical error and empirical risk are often used interchangeably for this error.

The empirical risk is the average loss of an estimator for a finite set of data

Since the training sample is the snapshot of the world that 1s available to the learner, 1t makes
sense to search for a solution that works well on that data. This learning paradigm — coming up
with a predictor h that minimizes Ls(h) — 1s called Empirical Risk Minimization or ERM for short.

The goal of learning is to minimize the risk function



Overtfitting

Assume that the probability distribution D is such that instances are distributed
O uniformly within the gray square and the labeling function, f, determines the label
P === = to be 1 if the instance is within the inner blue square, and O otherwise.

® | @® The area of the gray square in the picture is 2 and the area of the blue square is 1.

Consider the following predictor:

(Z- it 32 € m|s.t.x; =x
_____ . hs(e) = 1Y ud

° o ° 0 otherwise.

LD(hs) = 1/2. We have found a predictor whose performance on the training set 1s
excellent, yet its performance on the true “world” is very poor. This phenomenon
is called overfitting.

Goal: search for conditions under which there is a guarantee that ERM does not overfit

l

conditions under which when the ERM predictor has good performance with respect to the training
data, 1t 1s also highly likely to perform well over the underlying data distribution



Empirical Risk Minimization with Inductive Bias

The idea of risk minimization is not only measure the performance of an
estimator by its risk, but to actually search for the estimator that minimizes
risk over distribution

ERMy (S) c argmin Lg (h),
heH

where argmin stands for the set of hypotheses in H that achieve the minimum value of LS(h) over H

By restricting the learner to choosing a predictor from H, we bias it toward a particular set of
predictors. Such restrictions are often called an inductive bias.

Since the choice of such a restriction is determined before the learner sees the training data, it should ideally be based on
some prior knowledge about the problem to be learned. For example, for the papaya taste prediction problem we may
choose the class H to be the set of predictors that are determined by axis aligned rectangles (in the space determined by the

color and softness coordinates).

A fundamental question in learning theory is, over which hypothesis classes ERMH
learning will not result in overfitting

Intuitively, choosing a more restricted hypothesis class better protects us against overfitting but at the same time might
cause us a stronger inductive bias



Ingredients

Almost every problem in ML and data science starts with the same
ingredients.

- The first ingredient is the dataset X.
- The second 1s the model g(w), which 1s a function of the parameters w.

- The final ingredient 1s the cost function C(X, g(w)) that allows us to judge how
well the model g(w) explains, or in general performs on, the observations X.

The model 1s fit by finding the value of w that minimizes the cost function. For
example, one commonly used cost function 1s the squared error. Minimizing the
squared error cost function 1s known as the method of least squares, and is
typically appropriate for experiments with Gaussian measurement errors.
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MACHINE LEARNING
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Regression

Regression 1s a method of modelling a target value based on independent

predictors.

Simple linear regression i1s a type of
regression analysis where there is a linear
relationship between the independent (x)

and dependent(y) variable

y=a0+a_1l*x

L4 L] 0 . . .
. | The motive of the linear regression
o algorithm 1s to find the best values for

26 10 10 20 30 40 50 60 a 0anda 1

Since we want the best values for a_0 and a_1, we convert this search problem into a minimization
problem where we would like to minimize the error between the predicted value and the actual value

n
Mean Squared Error(MSE) function J — l Z(p,,. ed; — y; )2

This provides the average squared error over all the data points n i—1



Regression

Gradient descent 1s a method of updating a_0 and a_1 to reduce the cost function(MSE)

The idea is that we start with some values for a_( and a_1 and then we change these values
iteratively to reduce the cost

Big learning rate Small learning rate

If you decide to take one step at a time you would eventually reach the bottom of the pit but this
would take a longer time.

If you choose to take longer steps each time, you would reach sooner but, there is a chance that
you could overshoot the bottom of the pit and not exactly at the bottom.



Regression

- Convex . Non-convex Sometimes the cost function can

" " " be a non-convex function where
you could settle at a local
minima but for linear
. o regression, it 1s always a convex
e o/ function

The partial derivates are the gradients and they are used to update the values of a_0 and a_1

n

g1 S (pred; — i)’ Alpha is the learning rate which is a
™ ia hyperparameter that you must specify

1 n
J = EZ(UIO"‘GI ‘@i — i)’
i=1 9 M

0 2 & o0 2 & aO:aO_a'_Z(p"ed"_y")
B—ao_ ﬁg(ao—l—aymi—w) — a—ao—;;(predz_yz) n i=1

8y 2 0 _ 2y 2\

bor ~ 20 o) s = = red —u) s gy =ay—a- > Y (pred; — %) @

1=1



Polynimial Regression

Consider a probabilistic process that assigns a label yi to an observation xi. The data are generated
by drawing samples from the equation

where f(xi) 1s some fixed (but possibly unknown) function, and ni is a Gaussian, uncorrelated noise

variable, such that
<777l > = 0,
_ 2
(Mim;) = 0i50°.
We will refer to the f(xi) as the function used to generate the data, and ¢ as the noise strength. The
larger ¢ is the noisier the data; 6 = 0 corresponds to the noiseless case.
To make predictions, we will consider a family of functions ga(x;we) that depend on some

parameters wq. These functions represent the model class that we are using to model the data and
make predictions. Note that we choose the model class without knowing the function f(x).



N =100, 0 =1 (train)

N =100, o =1 (pred.)

20 .
4 ¢ Test
A = linear ¢
2 10 3rd order
w1 (Oth order ¢
> () = > D
Trammg' A ¢ "
_9 Linear ° 0
Poly 3 .
—4 Poly 10
00 02 04 06 08 10 Yoo o025 05 075 100 195
X X

Obviously, more data and less noise leads to better predictions

Complex models with many parameters, such as the tenth order polynomial in
this example, can capture both the global trends and noise-generates patterns at
the same time.

In this case, the model can be tricked into thinking that the noise encodes real
information. This problem is called “overfitting” and leads to a steep drop-off in
predictive performance.



Number of data

The model 1s fit by minimizing the cost function using only the data in the training
set w = argminw {C(Xtrain, g(w))}.

Models with a large difference

between the in-sample and out-of-

sample errors are said to “overfit” the
Eout data.

Variance One of the lessons of statistical learning
} theory is that it is not enough to simply
————————————— = minimize the training error, since the out-

—-—-_‘_—-
-
-
-

Pl of-sample error can still be large.

Error
|
|
|

.
seig

v Ein Ein — C(Xtrainag(w))

Number of data points Eout = C(Xtest, g(w))

One of the most important observations we can make is that the out-of-sample error 1s almost
always greater than the in-sample error, 1.e. Eout = Ein.



Model complexity

This schematic shows the

typical out-of-sample error

Eout as function of the

Eout model complexity for a

training dataset of fixed

size. Notice how the bias

always decreases with

model complexity, but the

Variance variance, 1.e. fluctuation in

~ < performance due to finite

-~ size  sampling  effects,

=~ - increases  with  model

complexity. Thus, optimal

performance is achieved

at intermediate levels of
model complexity.

Error
/

/
——— e =

Model Complexity

Even though using a more complicated model always reduces the bias, at some
point the model becomes too complex for the amount of training data and the
generalization error becomes large due to high variance.



to minimize Eout and maximize our predictive power, it may be more suitable
to use a more biased model with small variance than a less-biased model with
large variance.

This important concept is commonly called the bias-variance tradeoff and gets
at the heart of why machine learning is difficult.




The bias-variance tradeoff

We will discuss the bias-variance tradeoff in the context of continuous
predictions such as regression

Xe ={(yj,z;),j =1...N} Y — f(il?‘) T €

Assume that we have a statistical procedure (e.g. least- squares regression) for forming a predictor
g"L(x) that gives the prediction of our model for a new data point x.

This estimator 1s chosen by minimizing a cost function which we take to be the squared error

C(X,g(m) = (yi — el®s))

1

we can view g L as a stochastic functional that depends on the dataset L and
we can think of EL as the expected value of the functional if we drew an
infinite number of datasets {L1,L2,...}.



The bias-variance tradeoff

We would also like to average over different instances of the “noise’ € and we
denote the expectation value over the noise by E:. Thus, we can decompose the
expected generalization error as

ErC(X. g(x)] = Ece | Y (yi— gﬁ(wi))Ql




The bias-variance tradeoff

Eow = Er [C(X, §(x))] = Bias* + Var + Noise.

Bias? = Z(f(wz) — Ezlge(:)])

1

Var—ZEg — Erlge(x )])2]7

The bias-variance tradeoff summarizes the fundamental tension in machine learning, particularly

supervised learning, between the complexity of a model and the amount of training data needed to
train it.

Since data 1s often limited, in practice it is often useful to use a less-complex model with higher
bias — a model whose asymptotic performance 1s worse than another model — because it 1s easier

to train and less sensitive to sampling noise arising from having a finite-sized training dataset
(smaller variance).



The bias-variance tradeoff

High variance, x % X y
low-bias model
X X
X X X
True model
X X
X X X @ X X
X
X X
X X X
X y Low variance,
X X X X high-bias model

Thus, depending on the amount of training data, it may be more favorable to
use a less complex, high-bias model to make predictions.



Gaussian Mixture Models

A Gaussian Mixture Model (GMM) 1s a parametric probability density function represented as a
weighted sum of Gaussian component densities.

GMM parameters are estimated from training data using the iterative Expectation-Maximization

(EM)
M
_ , M
p(X‘)\) o ; Wy g(X‘lL“ Ez)a Zz 1 w,; =

1 1 _
gl 20) = e b o ) 5 - )|

The complete Gaussian mixture model 1s parameterized by the mean vectors, covariance matrices
and mixture weights from all component densities

)\:{wi, i, 2@} iZl,...,M.



Gaussian Mixture Models

(b)) UNIMOIDAIL GAUSSIAN




Maximum Likelihood Parameter Estimation

Given training vectors and a GMM configuration, we wish to estimate the parameters of the GMM,
A, which in some sense best matches the distribution of the training feature vectors.

The aim of ML estimation is to find the model parameters which maximize the likelihood of the
GMM given the training data. For a sequence of T training vectors X = {x1, ..., xT }, the GMM
likelihood, assuming independence between the vectors, can be written as,

p(X|\) = Hp x¢|\).

Unfortunately, this expression is a non-linear functlon of the parameters A and direct maximization is
not possible. However, ML parameter estimates can be obtained iteratively using a special case of
the expectation-maximization (EM) algorithm .

The basic idea of the EM algorithm is, beginning with an initial model A, to estimate a new
model A, such that p(XIX) = p(XIA)

zT: ET
T
- 1 ' PI‘ |Xt7 PI‘ ‘Xt,
Wi = g Pr(i|x:, A). G, = =L . o _ 1= 9
t=1 L i T His
PI' ‘Xt,
;:1: E Pr(i|xs, A)

t=1



Classification

Classification algorithms are used when the desired output is a discrete label.

Many use cases, such as determining whether an email 1s spam or not, have only two possible
outcomes. This is called binary classification (on the other hand, regression 1s useful for predicting
outputs that are continuous)

Types of classification algorithms in Machine I.earning:

o Linear Classifiers: Logistic Regression, Naive Bayes Classifier

o Support Vector Machines

. Decision Trees

. Boosted Trees

° Random Forest

o Neural Networks

. Nearest Neighbor



Classification

ROC curve ( Receiver Operating Characteristics)

ROC curve 1s used for visual comparison of classification models which shows the trade-off between
the true positive rate and the false positive rate. The area under the ROC curve is a measure of
the accuracy of the model. When a model is closer to the diagonal, it 1s less accurate and the model

with perfect accuracy will have an area of 1.0

Distributions of the Observed signal strength
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Linkage-Based Clustering Algorithms

Linkage-based clustering is probably the simplest and most straightforward paradigm of clustering.

They start from the trivial clustering that has each data point as a single-point cluster. Then, repeatedly, these
algorithms merge the “closest” clusters of the previous clustering.

Two parameters, then, need to be determined to define such an algorithm clearly.

First, we have to decide how to measure (or define) the distance between clusters, and, second, we have to
determine when to stop merging.

There are many ways of extending d to a measure of distance between domain subsets (or clusters). The most
common ways are
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Linkage-Based Clustering Algorithms

Linkage-based clustering is probably the simplest and most straightforward paradigm of clustering.

They start from the trivial clustering that has each data point as a single-point cluster. Then, repeatedly, these
algorithms merge the “closest” clusters of the previous clustering.

Two parameters, then, need to be determined to define such an algorithm clearly.

First, we have to decide how to measure (or define) the distance between clusters, and, second, we have to
determine when to stop merging.

There are many ways of extending d to a measure of distance between domain subsets (or clusters). The most
common ways are

1. Single Linkage clustering, in which the between-clusters distance is defined by the minimum distance
between members of the two clusters, namely,

D(A,B) ¥ min{d(z,y):x € A, y € B

2. Average Linkage clustering, in which the distance between two clusters is defined to be the average
distance between a point in one of the clusters and a point in the other, namely,

D(A, B) L ﬁ Z d(x,y)

r€A, yeB

3. Max Linkage clustering, in which the distance between two clusters is defined as the maximum

distance between their elements, namely,

D(A, B) L max{d(z,y):x € A, y € B}.



K-means clustering

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled
data (1.e., data without defined categories or groups). The goal of this algorithm 1s to find groups
in the data, with the number of groups represented by the variable K.

The algorithm works iteratively to assign each data point to one of K groups based on the features
that are provided. Data points are clustered based on feature similarity.

The results of the K-means clustering algorithm are:

1. The centroids of the K clusters, which can be used to label new data

2. Labels for the training data (each data point is assigned to a single cluster)



K-means clustering

Algorithm

The K-means clustering algorithm uses iterative refinement to produce a final result. The
algorithm inputs are the number of clusters K and the data set. The data set is a collection of
features for each data point. The algorithms starts with initial estimates for the K centroids,
which can either be randomly generated or randomly selected from the data set.

The algorithm then iterates between two steps:

1. Data assigment step:
Each centroid defines one of the clusters. In this step, each data point 1s assigned to its nearest

centroid, based on the squared Euclidean distance.

2. Centroid update step:
In this step, the centroids are recomputed. This is done by taking the mean of all data points

assigned to that centroid's cluster.



K-means clustering

One of the metrics that 1s commonly used to compare results across different values of K 1s the
mean distance between data points and their cluster centroid. Since increasing the number of
clusters will always reduce the distance to data points, increasing K will always decrease this
metric, to the extreme of reaching zero when K 1s the same as the number of data points

Elbow Point Example
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K-means clustering
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Neural Network

Stochastic Gradient Descent

Neural Network Model

Backpropagation algorithm

Supervised Learning

Supervised learning adjusts network parameters by a direct
comparison between the actual network output and the desired
output. Supervised learning is a closed-loop feedback system,
where the error is the feedback signal . The error measure is
usually defined by the mean squared error (MSE)

1 al )
E:NPZ:;”)’P_S’P” ’

Unsupervised Learning

Unsupervised learning involves no target valures. It is solely
based on the correlations among the input data, and is used to find
the significant patterns or features in the input data without the
help of a teacher

Reinforcement learning

i1s a special case of supervised learning, where the exact desired
output is unknown. The teacher supplies only feedback about
success or failure of an answer. This is cognitively more plausible
than supervised learning since a fully specified correct answer
might not always be available to the learner or even the teacher. It
is based only on the information as to whether or not the actual
output is close to the estimate.



Stochastic Gradient Descent (SGD)

The branch of mathematics concerned with computing gradients is called Differential Calculus. The
relevant general 1dea 1s straightforward. Consider a function y = {(X)

Y a
fix)

of (x) Ay +. fx+Ax)-f(x)
ox Axl%le Axl%l Ax

v

If we want to change the value of x to minimise a function f{x), what we need to do

depends on the gradient of f(x) at the current value of x. There are three cases:

If % >0 then f{x)increases as x increases so  we should decrease x
If % <0 then f{x)decreases as x increases so  we should increase x
It % =0 then f{x)isata maximum or minimum so we should not change x

In summary, we can decrease f{x) by changing x by the amount:

Ax = Xnew — Xold = — N "
ox

where 1) is a small positive constant specifying how much we change x by, and the
derivative df/dx tells us which direction to go in. If we repeatedly use this equation, f{x)
will (assuming 7} is sufficiently small) keep descending towards a minimum, and hence

this procedure is known as gradient descent minimisation.



Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent: we are minimizing the risk function, and since we do not know D we also do not know

the gradient of LD(w). SGD circumvents this problem by allowing the optimization procedure to take a step along a
random direction, as long as the expected value of the direction 1s the negative of the gradient.

Gradient descent is an iterative algorithm. We start with an initial value of w (say, w(1) = 0).
Then, at each iteration, we take a step in the direction of the negative of the gradient at the

current point.

(D)

—w® — v f(w®),

n > 0

In stochastic gradient descent we
do not require the update direction
to be based exactly on the gradient.
Instead, we allow the direction to
be a random vector and only
require that its expected value at
each iteration will equal the
gradient direction.



Stochastic Gradient Descent (SGD)

The basic idea behind these methods is
straightforward: iteratively adjust the parameters in
the direction where the gradient of the cost
function is large and negative.




Neural Networks

An artificial neural network learning
algorithm 1s a learning algorithm that is
inspired by the structure and functional
aspects of biological neural networks.

~ Dendriti

————— Nucleo e nucleolo

Assone ——— Guaina mielinica

Computations are structured in terms of
an Interconnected group of artificial
neurons, processing information using a
connectionist approach to computation.
Modern neural networks are non-linear
statistical data modeling tools.

\ Nodo di Ranvier

Bottoni sinaptici —

We will use them to model complex relationships between inputs and outputs, to
find patterns in data.



Neural Networks

REFRACTORY PERIOD g S
ABSOLUTE RELATIVE
;;4_30 | Ve - \I SR ——— Nucleo e nucleolo
s o e
E.Y |
= |
Q |
:?. i Assone - Guaina mielinica
= 55 ) \ : Threshold
= -70 : : ' \ Nodo di Ranvier
S : : :
= R o

N

Bottoni sinaptici AN
An action potential occurs when a neuron sends information down an axon, away from the cell
body. Neuroscientists use other words, such as a "spike" or an "impulse" for the action potential.
Some event (a stimulus) causes the resting potential to move toward O mV. When the depolarization
reaches about -355 mV a neuron will fire an action potential. This is the threshold. If the neuron does
not reach this critical threshold level, then no action potential will fire.



Neural Networks

The signals of variable magnitudes arrive at the dendrites. Those input signals
are then accumulated in the cell body of the neuron, and if the accumulated
signal exceeds a certain threshold, a output signal 1s generated that which will be
passed on by the axon.

Axon
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Schematic of a biological neuron.



Neural Networks

Conceptually, it is helpful to divide neural networks into four
categories:

(1) general purpose neural networks for supervised learning,

(11) neural networks designed specifically for image processing, the most
prominent ex- ample of this class being Convolutional Neural Networks

(CNNs),

(i11) neural networks for sequential data such as Recurrent Neural Networks
(RNNs),

(1v) neural networks for unsupervised learning such as Deep Boltzmann
Machines.



First artificial neurons: The McCulloch-Pitts model

Warren McCulloch and Walter Pitts, 1943

The McCulloch-Pitts model was an extremely simple artificial neuron. The inputs
could be either a zero or a one. And the output was a zero or a one. And each
input could be either excitatory or inhibitory.

w, = +1

Xy o
w, = +1

e T o
w, = -1

The variables wl, w2 and w3 indicate which input 1s excitatory, and which one
1s inhibitory.

If a weight is 1, 1t 1s an excitatory input.

If 1t 1s -1, 1t 1s an 1nhibitory input.



Neural Networks: One-Neuron Perceptron

Rosenblatt, 1958 Frank Rosenblatt published the first concept of the Perceptron learning rule

A perceptron receives multiple input signals, and if the sum of the input signals exceed a
certain threshold it either returns a signal or remains “silent” otherwise

The Perceptron Learning Rule

1) Initialize the weights to 0 or small random numbers
2) For each training sample x(i)

1. Calculate the output value.

2. Update the weights

wj = wj +Awj

Awj=n(target(i) — output(i))x(1)



Neural Networks: One-Neuron Perceptron

Rosenblatt, 1958 Frank Rosenblatt published the first concept of the Perceptron learning rule
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Neural Networks: Single-Layer Perceptron

When more neurons with the hard-limiter activation function are used, we have a single-layer
perceptron.

Mo— NV 996

Y1

~ |1, net ;>0
| 0, otherwise

€r,j = Yt,j — Vt,j>

w;ij(t +1) = w;;(t) +nx; e,



Neural Networks: The Multilayer Perceptron

In the case of the MLP, it includes an input layer (that does not do any processing),
one output layer and at least one hidden layer.

The MLP generally learns by means of a backpropagation algorithm, which is
basically a gradient technique.

Input Hidden Output
layer layer layer
(Vo) (V1) (V2)

The backpropagation algorithm looks for the minimum of the error function in weight space using
the method of gradient descent. The combination of weights which minimizes the error function is
considered to be a solution of the learning problem.




Neural Networks

A neural network consists of units (neurons), arranged in layers, which convert an input vector
into some output.

Each unit takes an input, applies a (often nonlinear) function to it and then passes the output on to
the next layer.

Generally the networks are defined to be feed-forward: a unit feeds its output to all the units on
the next layer, but there 1s no feedback to the previous layer.

Weightings are applied to the signals passing from one unit to another, and it 1s these weightings
which are tuned in the training phase to adapt a neural network to the particular problem at hand.

There are many network architectures available now like Feed-forward, Convolutional,
Recurrent etc



Neural Networks

(a) (b)

Fig. 1.5 Architecture of neural networks. a Layered feedforward network. b Recurrent network.
¢ Two-dimensional lattice network. d Layered feedforward network with lateral connections. e
Cellular network. The big numbered circles stand for neurons and the small ones for input nodes



Neural Networks: backpropagation algorithm

The basic procedure for training neural is the same as we used for training simpler supervised
learning algorithms, such as logistic and linear regression: construct a cost/loss function and then use
gradient descent to minimize the cost function.

Neural networks differ from these simpler supervised procedures in that generally they
contain multiple hidden layers that make taking the gradient more computationally difficult.

The most successtul algorithm for training neural networks 1s backpropagation, introduced to neural
networks by Rumelhart et al. in 1985



Neural Networks: backpropagation algorithm

The backpropagation algorithm looks for the minimum of the error function in
weight space using the method of gradient descent.

The combination of weights which minimizes the error function is considered
to be a solution of the learning problem.

Since this method requires computation of the gradient of the error function at
each iteration step, we must guarantee the continuity and differentiability of
the error function.

One of the more popular activation functions for backpropagation networks is
the sigmoid, a real function defined by the expression.



Neural Networks: backpropagation algorithm

L layers in our network with1=1,....LL Rumelhart et al. in 1985
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Neural Networks: backpropagation algorithm
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Neural Networks: backpropagation algorithm

These equations can be combined into a simple, computationally efficient
algorithm to calculate the gradient with respect to all parameters

Nielsen, Michael A (2015), Neural networks and deep learning

The Backpropagation Algorithm

1. Activation at input layer: calculate the activations al j of all the neurons in the input layer.

2. Feedforward: starting with the first layer, exploit the feed-forward architecture to compute zl and al for each
subsequent layer.

3. Error at top layer: calculate the error of the top layer

4. “Backpropagate” the error: propagate the error backwards and calculate Alj for all layers.

S oF oL
5. Calculate gradient: calculate o0 and Bul,




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 5 0 w7 ® two biases

0 (@
0 w4 55 w8 9 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
® Step — 2: Backward Propagation

b1.35 b2 .60
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 1: Forward Propagation

Net Input For h1:

S

net h1 =w1¥*i1 + w2%i2 + b1*1 } >[ net h1 =0.15%0.05 + 0.2*0.1 + 0.35*1 = 0.3775 J

Output Of h1:

)

out h1 = 1/1+eneth’ } »[ 1/1+e3775 =0.593269992 ]

Output Of h2:

(

out h2 = 0.596884378 ]




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 5 0w @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 1: Forward Propagation

We will repeat this process for the output layer neurons, using the output from the
hidden layer neurons as inputs.



Neural Networks: backpropagation algorithm

A5 wi 40 w5

.05 i h1
20 W2 45 01

25 w3 50 W7
0 (@
0 w4 55 w8 =
b1.35 b2 .60
Step — 1: Forward Propagation

Output For o1:

Output For o2:

[ Out 02 = 0.772928465 ]

The above network contains the following:
® two inputs
@ two hidden neurons
@ (WO output neurons
® two biases

Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
® Step — 2: Backward Propagation
@ Step — 3: Putting all the values together and
calculating the updated weight value

r net ol = wS*out h1 + wb*out h2 + b2*1 —»

0.4*0.593269992 + 0.45*%0.596884378 + 0.6*1 = 1.105905967 ]

Out o1 = 1/1+eeto] - 5

1/1+e7 1105905967 _ 5 75136507 ]




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 5 0w @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 1: Forward Propagation

Now, let’s see what 1s the value of the error:



Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE e two hidden neurons
@ (WO output neurons

25 w3 50 7 @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 1: Forward Propagation
rror rorol:

[ E 01-X1/2(target — output)? ]—»[ 1% (0.01 - 0.75136507)2 = 0.274811083 ]

| E 02 = 0.023560026 ]

Total Error:

| Frotal = E 01 + E 02 ]—>[ 0.274811083 + 0.023560026 = 0.298371109 }




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 50 7 @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 2: Backward Propagation

Now, we will propagate backwards. This way we will try to reduce the error by
changing the values of weights and biases.
Consider W5, we will calculate the rate of change of error w.r.t change in weight W5.



Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 50 7 @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 2: Backward Propagation

out h2 W5

(" {'\
w6
dEtotal — OEtotal 4 dout ol 4 dSnetol out h1 net o1| out o1l F total

Ow5 dout o1l onet ol ow5s




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 5 0w @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 2: Backward Propagation

calculate the change in total errors w.r.t the output Ol and O2.



Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 50 7 @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 2: Backward Propagation

/
Etotal = 1/2(target o1 - out 01)* + 1/2(target 02 — out 02)?

OEtotal
oout o1

= -(target o1 - outo0l1) =-(0.01 -0.75136507) = 0.74136507




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 50 7 @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 2: Backward Propagation

/

oout ol
onet ol

out o1 = 1/1+e~netol
=outol (1T-outol1)=0.75136507 (1 -0.75136507) =0.186815602

J




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE Py e two hidden neurons
@ (WO output neurons

25 w3 5 0w @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 2: Backward Propagation

g netol =w5*outhl+w6*outh2+b2*1

5’:;5"1 -1 *outhl w521 + 0+ 0 =0.593269992
Y,




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE e two hidden neurons
@ (WO output neurons

25 w3 50 7 @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 3: Putting all the values together and calculating the updated weight value

dEtotal 6Etotal 4 Sout o1l dnet ol
e 0.082167041
SW5 dout ol onetol Sw5




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE e two hidden neurons
@ (WO output neurons

25 w3 50 7 @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 3: Putting all the values together and calculating the updated weight value

w5+ = w5 - n6Etotaﬂ {

w5t =0.4-0.5%0.082167041 ]
sw5

__Updatedw5 > »_ 035891648




Neural Networks: backpropagation algorithm

The above network contains the following:
A5 w1 40 w5 .
o5 (o - @ two inputs

20 w2 45 WE e two hidden neurons
@ (WO output neurons

25 w3 5 0w @ two biases

0 (@
0 w4 55 w8 99 Below are the steps involved in Backpropagation:
® Step — 1: Forward Propagation
b2 60 ® Step — 2: Backward Propagation

b1.35
@ Step — 3: Putting all the values together and
calculating the updated weight value

Step — 3: Putting all the values together and calculating the updated weight value

@ Similarly, we can calculate the other weight values as well.

® After that we will again propagate forward and calculate the output. Again, we will
calculate the error.

e If the error is minimum we will stop right there, else we will again propagate
backwards and update the weight values.

® This process will keep on repeating until error becomes minimum.
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Recurrent Neural Network (RNN)

A usual RNN has a short-term memory
Recurrent Neural Networks add the immediate past to the present.

Recurrent Neural Network Feed-Forward Neural Network



Recurrent Neural Network (RNN)

To understand and visualize the back propagation, let’s unroll the network at all the time steps.

In case of a backward propagation in this case, we are figuratively going back in time to change the
weights, hence we call it the Back propagation through time(BPTT)
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Recurrent Neural Network (RNN)

The Backpropagation Through Time (BPTT) algorithm 1s an algorithm that performs an exact

computation of the gradient of the error measure for use in the weight adaptation.

E(nyum)= YY" ¢ (m)

m=n, i=1

The error measure may be minimized by gradient descent:

L = 2 outputs

external inputs

oE(n,,n)

Aw,. =—n

/ ow

Processing Layer of
N = 4 neurons

Nj“M feedforward and
N feedback connections

Concatenated
input-output
layer

7



Synchronous and asynchronous networks

A relevant 1ssue for the correct design of recurrent neural networks 1s the adequate
synchronization of the computing elements.

In the case of McCulloch-Pitts networks we solved this difficulty by assuming that
the activation of each computing element consumes a unit of time.

The synchronization of the output was achieved by requiring that all computing
elements evaluate their inputs and compute their output simultaneously.



Asynchronous networks

In an asynchronous network each unit computes its excitation at random times and
changes its state to 1 or —1 independently of the others and according to the sign of
its total excitation.

There will not be any delay between computation of the excitation and state update

Asynchronous networks are of course more realistic models of biological
networks, although the assump- tion of zero delay in the computation and
transmission of signals lacks any biological basis.



The Hopfield Model

In 1982 the American physicist John Hopfield proposed an asynchronous neural network model
which made an immediate impact in the AI community

No synchronization is required, each unit behaving as a kind of elementary system in complex
interaction with the rest of the ensemble

In the Hopfield model it 1s assumed that the individual units preserve their individual states until
they are selected for a new update. The selection is made randomly.

unit 1

A Hopfield network consists of n totally
coupled units, that 1s, each unit 1s connected
to all other units except itself.

The network 1s symmetric




The Hopfield Model

Each one of them can assume the state 1 or —1.

The connections in a Hopfield network with n units can be represented using an n X n weight
matrix W = {wij } with a zero diagonal.

unit 1

unit 2 unit 3

The units of a Hopfield network can be assigned a threshold 0 different from zero. In this case each
unit selected for a state update adopts the state 1 if its total excitation is greater than O, otherwise
the state —1. This is the activation rule for perceptrons, so that we can think of Hopfield networks
as asynchronous recurrent networks of perceptrons.

E(x :——> >1wzjazza:]—|—29 ;.

7=1 1=1




The Hopfield Model

In order to characterize the performance of the network, the concept of
energy is introduced and the following energy function defined




The Hopfield Model

Hopfield network consists of a set of interconnected neurons which update their activa- tion values
asynchronously. The activation values are binary, usually {-1,1}. The update of a unit depends on the
other units of the network and on itself. A unit 1 will be influence by an other unit j with a certain weight
wij, and have a threshold value

ri(t+1) = Szgn(z zi(t)wi; — 6;) X = sign(XW — T)

7=1
(1
. . . . xz
— X is the activation value of the n units/neurons : X =
\zn
( w11 wWi2 ... Win
) . . w21 W22 ... W2p .
— W is the weight matrix : W = . . . where w;; can be interpreted
\wnl “e oo Wpn

as the influence of neuron i over neuron j (and reciprocally)

(61
T is the threshold of each wnit : T — |

— 'T' 1s the threshold of each unit : 7'= | dE

6. J. = i T O—=

— the sign function is define as : (¥}

+1 it >0
—1 otherwise



Hebb Learning

Learning in biologically relevant neural-network models usually relies on Hebb learning rules.
The typical implementations of these rules change the synaptic strength on the basis of the co-

occurrence of the neural events taking place at a certain time in the pre- and post-synaptic
neurons.

The Hebbian rule was the first learning rule. In 1949 Donald Hebb developed it as learning

algorithm of the unsupervised neural network. We can use it to identify how to improve the
weights of nodes of a network.

The Hebb learning rule assumes that — If two neighbor neurons activated and deactivated at the
same time. Then the weight connecting these neurons should increase.

For neurons operating in the opposite phase, the weight between them should decrease. It there i1s
no signal correlation, the weight should not change.

The Hebbian learning rule describes the formula as follows:

W.. = X.*X.
1] 1 j



Delta Learning Rule

Developed by Widrow and Hoff, the delta rule, 1s one of the most common learning rules.
It depends on supervised learning.

This rule states that the modification in sympatric weight of a node 1s equal to the multiplication
of error and the input.

In Mathematical form the delta rule 1s as follows:
Aw=n (t-Vy) X,

We can use the delta learning rule with both single output unit and several output units.
While applying the delta rule assume that the error can be directly measured.

The aim of applying the delta rule 1s to reduce the difference between the actual and expected
output that is the error.



Correlation Learning Rule

The correlation learning rule based on a similar principle as the Hebbian learning rule. It

assumes that weights between responding neurons should be more positive, and weights between
neurons with opposite reaction should be more negative.

In Mathematical form the correlation learning rule is as follows:
AW, .= NxX.d,
1] L ]

where dj 1s the desired value of output signal. This training algorithm usually starts with the
initialization of weights to zero.

Since assigning the desired weight by users, the correlation learning rule 1s an example of
supervised learning



Learning Rule

In conclusion to the learning rules in Neural Network, we can say that
most promising feature of the Artificial Neural Network is its ability to

learn. The learning process of brain alters its neural structure. The
Increasing or decreasing the strength of its synaptic connections
depending on their activity.




Deep Learning?

ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn
without being explicitly programmed

DEEP LEARNING

Subset of machine learning
in which artificial neural
networks adapt and learn
from vast amounts of data




Deep Learning?

Deep Learning: Falling hardware prices and the development of
GPUs for personal use 1n the last few years have contributed to the
development of the concept of Deep learning which consists of
multiple hidden layers in an artificial neural network.

This approach tries to model the way the human brain processes light
and sound 1nto vision and hearing. Some successful applications of
deep learning are computer vision and speech recognition.



Convolutional Neural Network (CNN)

CNNs are the backbone of
many modern deep learning
i 3 i applications and here we just
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the specialized literature.

Convolutional Neural
Networks (ConvNets or
CNNs) are a category of

82% cat

> Neural Networks that have
image classification 15% dog . :
2% hat proven very effective in areas
1% mug such as image recognition and
classification.

Later, in 1998, Convolutional Neural Networks were introduced in a paper by
Bengio, Le Cun, Bottou and Haffner. Their first Convolutional Neural Network
was called LeNet-5 and was able to classify digits from hand-written numbers


https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/

Convolutional Neural Network (CNN)

We perform a series convolution + pooling operations, followed by a number of
fully connected layers. If we are performing multiclass classification the output
1s softmax. We will now dive into each component.
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Convolution Coarse-graining Convolution Coarse-graining

l (pooling) (pooling)



Convolutional Neural Network (CNN)

On the left side 1s the 1nput to the convolution
layer, for example the input image. On the right is
olol1]1]1 ol 1] o0 the convolution filter, also called the kernel, we
will use these terms interchangeably. This 1s called
a 3x3 convolution due to the shape of the filter. We
Ol 1] 1]0]O0 perform the convolution operation by sliding this
filter over the input

Input Filter / Kernel
Ix1|1x0(1x1| O 0 1 [Ix1|{1x0|[0x1| O
Ox0 | 1x1 [1x0| 1 0 4 0 [1x0|1x1[1xO| O 4 1 3
Ox1|0x0 [1x1]| 1 1 0 |Ox1|1x0|1x1]| 1
01| 0 1 1 0 01| 0 1 1 0
0 1 1 0O 1] O 0 1 1 0O 1] 0
Input x Filter Feature Map Input x Filter Feature Map

This was an example convolution operation shown in 2D using a 3x3 filter



Convolutional Neural Network (CNN)
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We  perfom  numerous
convolutions on our input,
where each operation uses a
different filter. This results
in different feature maps. In
the end, we take all of these
feature maps and put them
together as the final output
of the convolution layer.

Just like any other Neural Network, we use an activation function to make our output non-linear.

After a convolution layer, it 1s common to add a pooling layer in between CNN layers. The
function of pooling is to continuously reduce the dimensionality to reduce the number of
parameters and computation in the network

The most frequent type of pooling is max pooling, which takes the maximum value in each window

After the convolution and pooling layers, our classification part consists of a few fully connected

layers



Convolutional Neural Network (CNN)

Let’s say we have a 32x32x3 1image and we use a filter of size 5x5x3

/

7
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| |77 1
z —__
/
32 32x32x1 32
3 10

The convolution operation for each filter 1s performed independently and the resulting feature maps
are disjoint.

For any kind of neural network to be powerful, it needs to contain non-linearity

The 3D convolution figures we saw above used padding, that’s why the height and width of the
feature map was the same as the input (both 32x32), and only the depth changed.



Convolutional Neural Network (CNN)

32

5x5x3

32

1x1x1

32x32x1

10

32

The gray area around the input 1s the padding. We
either pad with zeros or the values on the edge.
Now the dimensionality of the feature map matches
the input. Padding is commonly used in CNN to

2. preserve the size of the feature maps, otherwise
they would shrink at each layer, which is not
desirable
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Stride 1 with Padding Feature Map



Convolutional Neural Network (CNN)

After a convolution operation we usually perform pooling to reduce the
dimensionality

The most common type of pooling 1s max pooling which just takes the max value
in the pooling window. Contrary to the convolution operation, pooling has no
parameters

max pool with 2x2
window and stride 2 6 | 8§

DO D] OV | —
W~ D

1 32 pooling 16
e

16

10

32

10



Convolutional Neural Network (CNN)

Fully Connected

After the convolution + pooling layers we add a couple of fully connected layers

Conv +
Maxpool

Conv +
Maxpool

Conv +
Maxpool

Conv +
Maxpool

FC

FC  Output



Convolutional Neural Network (CNN)
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