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https://www.youtube.com/watch?v=UzxYlbK2c7E

Lecture 1 | Machine Learning (Stanford)

https://www.youtube.com/watch?v=h0e2HAPTGF4

11. Introduction to Machine Learning

https://www.coursera.org/learn/machine-learning

http://cs231n.stanford.edu

Deep Learning

https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-
networks-260c2de0a050



History
1950 Turing's Learning Machine

1951 First Neural Network Machine

1952 Machines Playing Checkers

1957 Discovery Perceptron

1963 Achievement Machines Playing Tic-Tac-Toe

1967 Nearest Neighbor

1969 Limitations of Neural Networks

1970 Automatic Differentation (Backpropagation)

1972 Discovery Term frequency–inverse document frequency (TF-
IDF)

1979 Stanford Cart

1980 Discovery Neocognitron

1981 Explanation Based Learning

1982 Discovery Recurrent Neural Network

1985 NetTalk

1986 Discovery Backpropagation

1989 Discovery Reinforcement Learning

1992 Achievement Machines Playing Backgammon

1995 Discovery Random Forest Algorithm

1995 Discovery Support Vector Machines

1997 Achievement IBM Deep Blue Beats Kasparov

1997 Discovery LSTM

1998 MNIST database

2002 Torch Machine Learning Library

2006 The Netflix Prize

2009 Achievement ImageNet

2010 Kaggle Competition

2011 Achievement Beating Humans in Jeopardy

2012 Achievement Recognizing Cats on YouTube

2014 Leap in Face Recognition

2014 Sibyl

2016 Achievement Beating Humans in Go



supervised

unsupervised



Defining learning broadly, to include any computer program that improves 
its performance at some task through experience.

Definition: 
A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its 
performance at tasks in T, as measured by P, improves with 

experience E. 

Definition



You have to follow the data…

2) As data is constantly added, the machine learning models ensure that the 
solution is constantly updated. 

3) If you use the most appropriate and constantly changing data sources in 
the context of machine learning, you have the opportunity to predict the 

future!

1) Machine learning uses a variety of algorithms that iteratively learn from 
data to improve, describe data, and predict outcomes.



The ability to distribute compute processing across clusters of computers has 
dramatically improved the ability to analyze complex data in record time

Defining Big Data

Big data is any kind of data source that has at least one of four shared 
characteristics:

» Extremely large Volumes of data

» The ability to move that data at a high Velocity of speed

» An ever-expanding Variety of data sources

» Veracity so that data sources truly represent truth

You have to follow the data…



When Do We Need Machine Learning? 

The problem’s complexity and the need for adaptivity. 

Tasks That Are Too Complex to Program. 

Tasks Performed by Animals/Humans

Examples of such tasks include driving, speech recognition, and image understanding.

Tasks beyond Human Capabilities: 
Analysis of very large and complex data sets: astronomical data, turning medical archives 
into  medical  knowledge,  weather  prediction,  analysis  of  genomic  data,  Web  search 
engines, and electronic commerce. 

Adaptivity. One limiting feature of programmed tools is their rigidity – once the program has 
been written down and installed, it stays unchanged. However, many tasks change over time or 
from one user to another. Machine learning tools – programs whose behavior adapts to their 
input data – offer a solution to such issues; they are, by nature, adaptive to changes in the 
environment they interact with. 
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broadest way of describing systems that can ɩthink.ɪ For eĨam-
ple, thermostats that learn your preference or applications that 
can identify people and what they are doing in photographs can 
be thought of as AI systems.

As illustrated in Figure 1-1, there are four main subsets of AI. In 
this book, we focus on machine learning. HoweĢer, in order 
to understand machine learning, it is important to put it in 
perspectiĢe.

When we eĨplore machine learning, we focus on the ability to 
learn and adapt a model based on the data rather than eĨplicit 
programming. In Chapter 6, we focus on applying machine learn-
ing to solĢing business problems.

Before we delĢe into the types of machine learning, it is important 
to understand the other subsets of AI:

 » Reasoning: Machine reasoning allows a system to make 
inferenFes Eased on data� Ζn essenFe� reasoning helps fill in 
the blanks when there is incomplete data. Machine reason-
ing helps make sense of connected data. For example, if a 
system has enough data and is asked “What is a safe internal 
temperature for eating a drumstick?” the system would be 
capable of telling you that the answer is 165 degrees. The 

FIGURE 1-1: AI is the overall category that includes machine learning and 
natural language processing.

Reasoning helps fill in the blanks when there is incomplete data. Machine reasoning helps make sense of connected data.
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NLP is the ability to train computers to understand both written text and human speech. NLP techniques are needed to capture the meaning 
of unstructured text from documents or communication from the user.

Reasoning helps fill in the blanks when there is incomplete data. Machine reasoning helps make sense of connected data.



CHAPTER 1  Understanding Machine Learning      13

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

broadest way of describing systems that can ɩthink.ɪ For eĨam-
ple, thermostats that learn your preference or applications that 
can identify people and what they are doing in photographs can 
be thought of as AI systems.

As illustrated in Figure 1-1, there are four main subsets of AI. In 
this book, we focus on machine learning. HoweĢer, in order 
to understand machine learning, it is important to put it in 
perspectiĢe.

When we eĨplore machine learning, we focus on the ability to 
learn and adapt a model based on the data rather than eĨplicit 
programming. In Chapter 6, we focus on applying machine learn-
ing to solĢing business problems.

Before we delĢe into the types of machine learning, it is important 
to understand the other subsets of AI:

 » Reasoning: Machine reasoning allows a system to make 
inferenFes Eased on data� Ζn essenFe� reasoning helps fill in 
the blanks when there is incomplete data. Machine reason-
ing helps make sense of connected data. For example, if a 
system has enough data and is asked “What is a safe internal 
temperature for eating a drumstick?” the system would be 
capable of telling you that the answer is 165 degrees. The 

FIGURE 1-1: AI is the overall category that includes machine learning and 
natural language processing.

Planning: Automated planning is the ability for an intelligent system to act autonomously and to construct a sequence of actions to reach a 
goal.

NLP is the ability to train computers to understand both written text and human speech. NLP techniques are needed to capture the meaning 
of unstructured text from documents or communication from the user.

Reasoning helps fill in the blanks when there is incomplete data. Machine reasoning helps make sense of connected data.
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Supervised learning typically begins with an established set of data and a certain understanding of how that data is 
classified.

Unsupervised learning is best suited when the problem requires a massive amount of data that is unlabeled.

Reinforcement learning is a behavioral learning model. The algorithm receives feedback from the analysis of the data so 
the user is guided to the best outcome. Reinforcement learning differs from other types of supervised learning because the 
system isn’t trained with the sample data set but through trial and error.

Deep learning is a specific method of machine learning that incorporates neural networks in successive layers in order to 
learn from data in an iterative manner.  Deep learning is  especially useful  when you’re trying to learn patterns from 
unstructured data.
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Fig. 2.1 Learning methods. a Supervised learning. ep = ŷp − yp. b Unsupervised learning.
c Reinforcement learning

on a predefined target set of unlabeled data, the goal being to label the specific target
set.

Multitask learning improves the generalization performance of learners by lever-
aging the domain-specific information contained in the related tasks [30]. Multiple
related tasks are learned simultaneously using a shared representation. In fact, the
training signals for extra tasks serve as an inductive bias [30].

In order to learn accurate models for rare cases, it is desirable to use data and
knowledge from similar cases; this is known as transfer learning. Transfer learning
is a general method for speeding up learning. It exploits the insight that generalization
may occur not only within tasks, but also across tasks. The core idea of transfer is that
experience gained in learning to perform one source task can help improve learning
performance in a related, but different, target task [154]. Transfer learning is related
in spirit to case-based and analogical learning. A theoretical analysis based on an
empirical Bayes perspective exhibits that the number of labeled examples required
for learning with transfer is often significantly smaller than that required for learning
each target independently [154].

Supervised Learning
Supervised learning adjusts network parameters by a direct comparison between the
actual network output and the desired output. Supervised learning is a closed-loop
feedback system, where the error is the feedback signal. The error measure, which
shows the difference between the network output and the output from the training
samples, is used to guide the learning process. The error measure is usually defined
by the mean squared error (MSE)

E = 1
N

N∑

p=1

∥∥ yp − ŷp
∥∥2 , (2.1)

where N is the number of pattern pairs in the sample set, yp is the output part of the
pth pattern pair, and ŷp is the network output corresponding to the pattern pair p.
The error E is calculated anew after each epoch. The learning process is terminated
when E is sufficiently small or a failure criterion is met.

- Supervised learning is widely used in classification, approximation, control, modeling and 
identification, signal processing, and optimization. 

- Unsupervised learning schemes are mainly used for clustering, vector quantization, feature 
extraction, signal coding, and data analysis. 

- Reinforcement learning is usually used in control and artificial intelligence. 

- Supervised learning - Unsupervised learning - Reinforcement learning
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∥∥2 , (2.1)

where N is the number of pattern pairs in the sample set, yp is the output part of the
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pth pattern pair, and ŷp is the network output corresponding to the pattern pair p.
The error E is calculated anew after each epoch. The learning process is terminated
when E is sufficiently small or a failure criterion is met.

- Supervised learning is widely used in classification, approximation, control, modeling and 
identification, signal processing, and optimization. 

- Unsupervised learning schemes are mainly used for clustering, vector quantization, feature 
extraction, signal coding, and data analysis. 

- Reinforcement learning is usually used in control and artificial intelligence. 

- Supervised learning - Unsupervised learning - Reinforcement learning



 Imagine you have just arrived in some small Pacific island. You soon find out 
that papayas are a significant ingredient in the local diet. However, you have 

never before tasted papayas. You have to learn how to predict whether a papaya 
you see in the market is tasty or not.

A Gentle Start 

First, you need to decide which features of a papaya your prediction should be based on 

papaya’s color papaya’s softness 



A Formal Model – The Statistical Learning Framework 

Domain set: An arbitrary set, X. This is the set of objects that we may wish to label. For example, in the papaya learning 
problem mentioned before, the domain set will be the set of all papayas. Usually, these domain points will be represented 
by a vector of features (like the papaya’s color and softness).

Label set: For our current discussion, we will restrict the label set to be a two-element set, usually {0,1} or {−1,+1}. Let Y 
denote our set of possible labels. For our papayas example, let Y be {0, 1}, where 1 represents being tasty and 0 stands for 
being not-tasty. 

Training data: S=((x1,y1)…(xm,ym)) is a finite sequence of pairs in X ×Y: that is, a sequence of labeled domain points. 

The learner’s output: The learner is requested to output a prediction rule, 

h : X → Y
This function is also called a predictor, a hypothesis, or a classifier. We use the notation A(S) to denote the hypothesis that 
a learning algorithm, A, returns upon receiving the training sequence S. 

A simple data-generation model we assume that there is some “correct” labeling function,

f : X → Y, and that yi = f(xi) for all i

The labeling function is unknown to the learner. In fact, this is just what the learner is trying to figure out.

The choice of which functions to include in H usually depends on our intuition about the 
problem of interest



34 A Gentle Start

tasted and their color, softness, and tastiness). Such labeled examples
are often called training examples. We sometimes also refer to S as a
training set.1

• The learner’s output: The learner is requested to output a prediction rule,
h : X ! Y. This function is also called a predictor, a hypothesis, or a clas-
sifier. The predictor can be used to predict the label of new domain points.
In our papayas example, it is a rule that our learner will employ to predict
whether future papayas he examines in the farmers’ market are going to
be tasty or not. We use the notation A(S) to denote the hypothesis that a
learning algorithm, A, returns upon receiving the training sequence S.

• A simple data-generation model We now explain how the training data is
generated. First, we assume that the instances (the papayas we encounter)
are generated by some probability distribution (in this case, representing
the environment). Let us denote that probability distribution over X by
D. It is important to note that we do not assume that the learner knows
anything about this distribution. For the type of learning tasks we discuss,
this could be any arbitrary probability distribution. As to the labels, in the
current discussion we assume that there is some “correct” labeling function,
f : X ! Y, and that yi = f(xi) for all i. This assumption will be relaxed in
the next chapter. The labeling function is unknown to the learner. In fact,
this is just what the learner is trying to figure out. In summary, each pair
in the training data S is generated by first sampling a point xi according
to D and then labeling it by f .

• Measures of success:We define the error of a classifier to be the probability
that it does not predict the correct label on a random data point generated
by the aforementioned underlying distribution. That is, the error of h is
the probability to draw a random instance x, according to the distribution
D, such that h(x) does not equal f(x).

Formally, given a domain subset,2 A ⇢ X , the probability distribution,
D, assigns a number, D(A), which determines how likely it is to observe a
point x 2 A. In many cases, we refer to A as an event and express it using
a function ⇡ : X ! {0, 1}, namely, A = {x 2 X : ⇡(x) = 1}. In that case,
we also use the notation Px⇠D[⇡(x)] to express D(A).

We define the error of a prediction rule, h : X ! Y, to be

LD,f (h)
def
= P

x⇠D

[h(x) 6= f(x)]
def
= D({x : h(x) 6= f(x)}). (2.1)

That is, the error of such h is the probability of randomly choosing an
example x for which h(x) 6= f(x). The subscript (D, f) indicates that the
error is measured with respect to the probability distribution D and the

1 Despite the “set” notation, S is a sequence. In particular, the same example may appear
twice in S and some algorithms can take into account the order of examples in S.

2 Strictly speaking, we should be more careful and require that A is a member of some
�-algebra of subsets of X , over which D is defined. We will formally define our
measurability assumptions in the next chapter.

Measures of success: the error of h is the probability to draw a random instance x, according to the 
distribution D, such that h(x) does not equal f(x)

A Formal Model – The Statistical Learning Framework 

Formally, given a domain subset, A ⊂ X , the probability distribution, D, assigns a number, D(A), 
which determines how likely it is to observe a point x ∈ A. 

We refer to A as an event and express it using a function π: X →{0,1}, namely, A={x ∈ X: π(x) = 1}. 
In that case, we also use the notation Px ∼ D[π(x)] to express D(A). 

We define the error of a prediction rule, h : X → Y , to be  

A learning algorithm receives as input a training set S, sampled from an 
unknown distribution D and labeled by some target function f, and should 
output a predictor hS : X → Y (the subscript S emphasizes the fact that the 

output predictor depends on S). 

The goal of the algorithm is to find hS that minimizes the error with respect to 
the unknown D and f. 



Empirical Risk Minimization: Since the learner does not know what D and f are, the true error is 
not directly available to the learner.

A useful notion of error that can be calculated by the learner is the training error – the error the 
classifier incurs over the training sample: 

where [m] = {1,...,m}.

2.2 Empirical Risk Minimization 35

correct labeling function f . We omit this subscript when it is clear from
the context. L(D,f)(h) has several synonymous names such as the general-
ization error, the risk, or the true error of h, and we will use these names
interchangeably throughout the book. We use the letter L for the error,
since we view this error as the loss of the learner. We will later also discuss
other possible formulations of such loss.

• A note about the information available to the learner The learner is
blind to the underlying distribution D over the world and to the labeling
function f. In our papayas example, we have just arrived in a new island
and we have no clue as to how papayas are distributed and how to predict
their tastiness. The only way the learner can interact with the environment
is through observing the training set.

In the next section we describe a simple learning paradigm for the preceding
setup and analyze its performance.

2.2 Empirical Risk Minimization

As mentioned earlier, a learning algorithm receives as input a training set S,
sampled from an unknown distribution D and labeled by some target function
f , and should output a predictor hS : X ! Y (the subscript S emphasizes the
fact that the output predictor depends on S). The goal of the algorithm is to
find hS that minimizes the error with respect to the unknown D and f .
Since the learner does not know what D and f are, the true error is not directly

available to the learner. A useful notion of error that can be calculated by the
learner is the training error – the error the classifier incurs over the training
sample:

LS(h)
def
=

|{i 2 [m] : h(xi) 6= yi}|

m
, (2.2)

where [m] = {1, . . . ,m}.
The terms empirical error and empirical risk are often used interchangeably

for this error.
Since the training sample is the snapshot of the world that is available to the

learner, it makes sense to search for a solution that works well on that data.
This learning paradigm – coming up with a predictor h that minimizes LS(h) –
is called Empirical Risk Minimization or ERM for short.

2.2.1 Something May Go Wrong – Overfitting

Although the ERM rule seems very natural, without being careful, this approach
may fail miserably.
To demonstrate such a failure, let us go back to the problem of learning to

The terms empirical error and empirical risk are often used interchangeably for this error.

The goal of learning is to minimize the risk function 

Since the training sample is the snapshot of the world that is available to the learner, it makes 
sense to search for a solution that works well on that data. This learning paradigm – coming up 
with a predictor h that minimizes LS(h) – is called Empirical Risk Minimization or ERM for short.

A Formal Model – The Statistical Learning Framework 

The empirical risk is the average loss of an estimator for a finite set of data
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predict the taste of a papaya on the basis of its softness and color. Consider a
sample as depicted in the following:

Assume that the probability distribution D is such that instances are distributed
uniformly within the gray square and the labeling function, f , determines the
label to be 1 if the instance is within the inner blue square, and 0 otherwise. The
area of the gray square in the picture is 2 and the area of the blue square is 1.
Consider the following predictor:

hS(x) =

(
yi if 9i 2 [m] s.t. xi = x

0 otherwise.
(2.3)

While this predictor might seem rather artificial, in Exercise 1 we show a natural
representation of it using polynomials. Clearly, no matter what the sample is,
LS(hS) = 0, and therefore this predictor may be chosen by an ERM algorithm (it
is one of the empirical-minimum-cost hypotheses; no classifier can have smaller
error). On the other hand, the true error of any classifier that predicts the label
1 only on a finite number of instances is, in this case, 1/2. Thus, LD(hS) = 1/2.
We have found a predictor whose performance on the training set is excellent,
yet its performance on the true “world” is very poor. This phenomenon is called
overfitting. Intuitively, overfitting occurs when our hypothesis fits the training
data “too well” (perhaps like the everyday experience that a person who provides
a perfect detailed explanation for each of his single actions may raise suspicion).

2.3 Empirical Risk Minimization with Inductive Bias

We have just demonstrated that the ERM rule might lead to overfitting. Rather
than giving up on the ERM paradigm, we will look for ways to rectify it. We will
search for conditions under which there is a guarantee that ERM does not overfit,
namely, conditions under which when the ERM predictor has good performance
with respect to the training data, it is also highly likely to perform well over the
underlying data distribution.

A common solution is to apply the ERM learning rule over a restricted search
space. Formally, the learner should choose in advance (before seeing the data) a
set of predictors. This set is called a hypothesis class and is denoted by H. Each
h 2 H is a function mapping from X to Y. For a given class H, and a training
sample, S, the ERMH learner uses the ERM rule to choose a predictor h 2 H,
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Assume that the probability distribution D is such that instances are distributed 
uniformly within the gray square and the labeling function, f, determines the label 
to be 1 if the instance is within the inner blue square, and 0 otherwise. 

The area of the gray square in the picture is 2 and the area of the blue square is 1. 

Consider the following predictor: 

LD(hS) = 1/2. We have found a predictor whose performance on the training set is 
excellent, yet its performance on the true “world” is very poor. This phenomenon 
is called overfitting. 

Goal: search for conditions under which there is a guarantee that ERM does not overfit

conditions under which when the ERM predictor has good performance with respect to the training 
data, it is also highly likely to perform well over the underlying data distribution 
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with the lowest possible error over S. Formally,

ERMH(S) 2 argmin
h2H

LS(h),

where argmin stands for the set of hypotheses in H that achieve the minimum
value of LS(h) over H. By restricting the learner to choosing a predictor from
H, we bias it toward a particular set of predictors. Such restrictions are often
called an inductive bias. Since the choice of such a restriction is determined
before the learner sees the training data, it should ideally be based on some
prior knowledge about the problem to be learned. For example, for the papaya
taste prediction problem we may choose the class H to be the set of predictors
that are determined by axis aligned rectangles (in the space determined by the
color and softness coordinates). We will later show that ERMH over this class is
guaranteed not to overfit. On the other hand, the example of overfitting that we
have seen previously, demonstrates that choosing H to be a class of predictors
that includes all functions that assign the value 1 to a finite set of domain points
does not su�ce to guarantee that ERMH will not overfit.
A fundamental question in learning theory is, over which hypothesis classes

ERMH learning will not result in overfitting. We will study this question later
in the book.
Intuitively, choosing a more restricted hypothesis class better protects us

against overfitting but at the same time might cause us a stronger inductive
bias. We will get back to this fundamental tradeo↵ later.

2.3.1 Finite Hypothesis Classes

The simplest type of restriction on a class is imposing an upper bound on its size
(that is, the number of predictors h in H). In this section, we show that if H is
a finite class then ERMH will not overfit, provided it is based on a su�ciently
large training sample (this size requirement will depend on the size of H).
Limiting the learner to prediction rules within some finite hypothesis class may

be considered as a reasonably mild restriction. For example, H can be the set of
all predictors that can be implemented by a C++ program written in at most
109 bits of code. In our papayas example, we mentioned previously the class of
axis aligned rectangles. While this is an infinite class, if we discretize the repre-
sentation of real numbers, say, by using a 64 bits floating-point representation,
the hypothesis class becomes a finite class.
Let us now analyze the performance of the ERMH learning rule assuming that

H is a finite class. For a training sample, S, labeled according to some f : X ! Y,
let hS denote a result of applying ERMH to S, namely,

hS 2 argmin
h2H

LS(h). (2.4)

In this chapter, we make the following simplifying assumption (which will be
relaxed in the next chapter).

where argmin stands for the set of hypotheses in H that achieve the minimum value of LS(h) over H 

By restricting the learner to choosing a predictor from H, we bias it toward a particular set of 
predictors. Such restrictions are often called an inductive bias. 

Since the choice of such a restriction is determined before the learner sees the training data, it should ideally be based on 
some prior knowledge about the problem to be learned. For example, for the papaya taste prediction problem we may 
choose the class H to be the set of predictors that are determined by axis aligned rectangles (in the space determined by the 
color and softness coordinates).

A fundamental question in learning theory is, over which hypothesis classes ERMH 
learning will not result in overfitting 

Intuitively, choosing a more restricted hypothesis class better protects us against overfitting but at the same time might 
cause us a stronger inductive bias 

Empirical Risk Minimization with Inductive Bias 

The idea of risk minimization is not only measure the performance of an 
estimator by its risk, but to actually search for the estimator that minimizes 

risk over distribution



Almost  every  problem  in  ML  and  data  science  starts  with  the  same 
ingredients. 
- The first ingredient is the dataset X. 
- The second is the model g(w), which is a function of the parameters w. 
- The final ingredient is the cost function C(X, g(w)) that allows us to judge how 
well the model g(w) explains, or in general performs on, the observations X. 

The model is fit by finding the value of w that minimizes the cost function. For 
example, one commonly used cost function is the squared error. Minimizing the 
squared error  cost  function  is  known as  the  method of  least  squares,  and is 
typically appropriate for experiments with Gaussian measurement errors. 

Typically, the majority of the data are partitioned into the training set (e.g., 90%) with the remainder going into the test set. The 
model is fit by minimizing the cost function using only the data in the training set wˆ = argminw {C(Xtrain, g(w))}. Finally, the 

performance of the model is evaluated by computing the cost function using the test set C(Xtest, g(wˆ)). The value of the cost 
function for the best fit model on the training set is called the in-sample error Ein = C(Xtrain,g(wˆ)) and the value of the cost 

function on the test set is called the out-of-sample error Eout = C(Xtest, g(wˆ)) 

Ingredients
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Regression 

Regression is a method of modelling a target value based on independent 
predictors.

Simple  linear  regression  is  a  type  of 
regression analysis where there is a linear 
relationship between the independent (x) 
and dependent(y) variable

y = a_0 + a_1 * x 

The  motive  of  the  linear  regression 
algorithm is  to  find the  best  values  for 
a_0 and a_1

Since we want the best values for a_0 and a_1, we convert this search problem into a minimization 
problem where we would like to minimize the error between the predicted value and the actual value

This provides the average squared error over all the data points

Mean Squared Error(MSE) function



Regression 

Gradient descent is a method of updating a_0 and a_1 to reduce the cost function(MSE)

The idea is that we start with some values for a_0 and a_1 and then we change these values 
iteratively to reduce the cost

If you decide to take one step at a time you would eventually reach the bottom of the pit but this 
would take a longer time. 

If you choose to take longer steps each time, you would reach sooner but, there is a chance that 
you could overshoot the bottom of the pit and not exactly at the bottom.



Regression 

Sometimes the cost function can 
be a non-convex function where 
you  could  settle  at  a  local 
minima  but  for  linear 
regression, it is always a convex 
function

The partial derivates are the gradients and they are used to update the values of a_0 and a_1

Alpha is the learning rate which is a 
hyperparameter that you must specify



Polynimial Regression 

Consider a probabilistic process that assigns a label yi to an observation xi. The data are generated 
by drawing samples from the equation 

7

FIG. 1 Fitting versus predicting for noiseless data. Ntrain = 10 points in the range x 2 [0, 1] were generated from a
linear model (top) or tenth-order polynomial (bottom). This data was fit using three model classes: linear models (red), all
polynomials of order 3 (yellow), all polynomials of order 10 (green) and used to make prediction on Ntest = 20 new data points
with xtest 2 [0, 1.2] (shown on right). Notice that in the absence of noise (� = 0), given enough data points that fitting and
predicting are identical.

than maxima or minima (an observation first made in
physics in the context of the p-spin spherical spin glass).
For all these reasons, it turns out that for complicated
models studied in ML, predicting and fitting are very
different things.

To develop some intuition about why we need to pay
close attention to out-of-sample performance, we will
consider a simple one-dimensional problem – polynomial
regression. Our task is a simple one, fitting data with
polynomials of different order. We will explore how our
ability to predict depends on the number of data points
we have, the “noise” in the data generation process, and
our prior knowledge about the system. The goal is to
build intuition about why prediction is difficult in prepa-
ration for introducing general strategies that overcome

these difficulties.
Before reading the rest of the section, we strongly en-

courage the reader to read Notebook 1 and complete the
accompanying exercises.

Consider a probabilistic process that assigns a label yi

to an observation xi. The data are generated by drawing
samples from the equation

yi = f(xi) + ⌘i, (1)

where f(xi) is some fixed (but possibly unknown) func-
tion, and ⌘i is a Gaussian, uncorrelated noise variable,
such that

h⌘ii = 0,

h⌘i⌘ji = �ij�
2.
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to an observation xi. The data are generated by drawing
samples from the equation

yi = f(xi) + ⌘i, (1)

where f(xi) is some fixed (but possibly unknown) func-
tion, and ⌘i is a Gaussian, uncorrelated noise variable,
such that

h⌘ii = 0,

h⌘i⌘ji = �ij�
2.

where f(xi) is some fixed (but possibly unknown) function, and ηi is a Gaussian, uncorrelated noise 
variable, such that 

We will refer to the f(xi) as the function used to generate the data, and σ as the noise strength. The 
larger σ is the noisier the data; σ = 0 corresponds to the noiseless case. 

To  make  predictions,  we  will  consider  a  family  of  functions  gα(x;wα)  that  depend  on  some 
parameters wα. These functions represent the model class that we are using to model the data and 
make predictions. Note that we choose the model class without knowing the function f(x). 
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FIG. 2 Fitting versus predicting for noisy data. Ntrain = 100 noisy data points (� = 1) in the range x 2 [0, 1] were
generated from a linear model (top) or tenth-order polynomial (bottom). This data was fit using three model classes: linear
models (red), all polynomials of order 3 (yellow), all polynomials of order 10 (green) and used to make prediction on Ntest = 20
new data points with xtest 2 [0, 1.2](shown on right). Notice that even when the data was generated using a tenth order
polynomial, the linear and third order polynomials give better out-of-sample predictions, especially beyond the x range over
which the model was trained.

We will refer to the f(xi) as the function used to generate
the data, and � as the noise strength. The larger � is the
noisier the data; � = 0 corresponds to the noiseless case.

To make predictions, we will consider a family of func-
tions g↵(x;w↵) that depend on some parameters w↵.
These functions represent the model class that we are us-
ing to model the data and make predictions. Note that
we choose the model class without knowing the function
f(x). The g↵(x;w↵) encode the features we choose to
represent the data. In the case of polynomial regression
we will consider three different model classes: (i) all poly-
nomials of order 1 which we denote by g1(x;w1), (ii) all
polynomials up to order 3 which we denote by g3(x;w3),
and (iii) all polynomials of order 10, g10(x;w10). Notice

that these three model classes contain different number
of parameters. Whereas g1(x;w1) has only two parame-
ters (the coefficients of the zeroth and first order terms
in the polynomial), g3(x;w3) and g10(x;w10) have four
and eleven parameters, respectively. This reflects the fact
that these three models have different model complexities.
If we think of each term in the polynomial as a “feature”
in our model, then increasing the order of the polyno-
mial we fit increases the number of features. Using a
more complex model class may give us better predictive
power, but only if we have enough statistical power to
accurately learn the model parameters associated with
these extra features from the training dataset.

To learn the parameters w↵, we will train our models

Obviously, more data and less noise leads to better predictions 

Complex models with many parameters, such as the tenth order polynomial in 
this example, can capture both the global trends and noise-generates patterns at 
the same time. 
In this case, the model can be tricked into thinking that the noise encodes real 
information. This problem is called “overfitting” and leads to a steep drop-off in 
predictive performance. 
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FIG. 4 Schematic of typical in-sample and out-of-

sample error as a function of training set size. The
typical in-sample or training error, Ein, out-of-sample or gen-
eralization error, Eout, bias, variance, and difference of errors
as a function of the number of training data points. The
schematic assumes that the number of data points is large (in
particular, the schematic does not show the initial drop in
Ein for small amounts of data), and that our model cannot
exactly fit the true function f(x).

crease with the number of data points in this high data
regime. As the number of data points gets large, the sam-
pling noise decreases and the training data set becomes a
better and better representative of the true distribution
from which the data is drawn. For this reason, in the in-
finite data limit, the in-sample and out-of-sample errors
must approach the same value, which is called the “bias”
of our model.

The bias represents the best our model could do if we
had an infinite amount of training data to beat down
sampling noise. The bias is a property of the kind of
functions, or model class, we are using to approximate
f(x). In general, the more complex the model class we
use, the smaller the bias. However, we do not generally
have an infinite amount of data. For this reason, to get
best predictive power it is better to minimize the out-of-
sample error, Eout rather than the bias. As shown graph-
ically in Figure 4, Eout can be naturally decomposed into
a bias, which measures how well we can hypothetically
do in the infinite data limit, and a variance which mea-
sures the typical errors introduced in training our model
due to sampling noise from having a finite training set.

The final quantity shown in Figure 4 is the difference
between the generalization and training error. It mea-
sures how well our in-sample error reflects the out-of-
sample error, and measures how much worse we would
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FIG. 5 Bias-Variance tradeoff and model complexity.

This schematic shows the typical out-of-sample error Eout as
function of the model complexity for a training dataset of fixed
size. Notice how the bias always decreases with model com-
plexity, but the variance, i.e. fluctuation in performance due
to finite size sampling effects, increases with model complex-
ity. Thus, optimal performance is achieved at intermediate
levels of model complexity.

do on a new data set compared to our training data. For
this reason, the difference between these errors is pre-
cisely the quantity that measures the difference between
fitting and predicting. Models with a large difference be-
tween the in-sample and out-of-sample errors are said to
“overfit” the data. One of the lessons of statistical learn-
ing theory is that it is not enough to simply minimize
the training error, since the out-of-sample error can still
be large. As we will see in our discussion of regression in
Sec. VI, this insight naturally leads to the idea of “regu-
larization”.

The second schematic, shown in Figure 5, shows the
out-of-sample, or test, error Eout as function of “model
complexity”. Model complexity is a very subtle idea and
defining it precisely is one of the great achievements of
statistical learning theory. However, roughly speaking,
model complexity is a measure of the complexity of the
model class we are using to approximate the true function
f(x). For example, a model with more free parameters is
generally more complex than one with fewer fitting pa-
rameters1. In the example of polynomial regression dis-
cussed above, higher-order polynomials are more complex
than the linear model. If we consider a training dataset
of a fixed size, Eout will be a non-monotonic function
of the model complexity, and is generally minimized for
models with intermediate complexity. The underlying

1 Note that models with more parameters are not always more
complex. One neat example in the context of one-dimensional
regression in given in (Friedman et al., 2001), Figure 7.5.
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neural networks, as well as convolutional nets. We then
turn our focus to unsupervised learning. We start with
data visualization and dimensionality reduction before
proceeding to a detailed treatment of clustering. Our
discussion of clustering naturally leads to an examina-
tion of variational methods and their close relationship
with mean-field theory. The review continues with a
discussion of deep unsupervised learning, focusing on
energy-based models, such as Restricted Boltzmann Ma-
chines (RBMs) and Deep Boltzmann Machines (DBMs).
Then we discuss two new and extremely popular model-
ing frameworks for unsupervised learning, generative ad-
versarial networks (GANs) and variational autoencoders
(VAEs). We conclude the review with an outlook and
discussion of promising research directions at the inter-
section physics and ML.

II. WHY IS MACHINE LEARNING DIFFICULT?

A. Setting up a problem in ML and data science

Almost every problem in ML and data science starts
with the same ingredients. The first ingredient is the
dataset X. The second is the model g(w), which is a
function of the parameters w. The final ingredient is the
cost function C(X, g(w)) that allows us to judge how well
the model g(w) explains, or in general performs on, the
observations X. The model is fit by finding the value of
w that minimizes the cost function. For example, one
commonly used cost function is the squared error. Min-
imizing the squared error cost function is known as the
method of least squares, and is typically appropriate for
experiments with Gaussian measurement errors.

ML researchers and data scientists follow a standard
recipe to obtain models that are useful for prediction
problems. We will see why this is necessary in the fol-
lowing sections, but it is useful to present the recipe up
front to provide context. The first step in the analysis
is to randomly divide the dataset X into two mutually
exclusive groups Xtrain and Xtest called the training and
test sets. The fact that this must be the first step should
be heavily emphasized – performing some analysis (such
as using the data to select important variables) before
partitioning the data is a common pitfall that can lead
to incorrect conclusions. Typically, the majority of the
data are partitioned into the training set (e.g., 90%) with
the remainder going into the test set. The model is fit by
minimizing the cost function using only the data in the
training set ŵ = argminw {C(Xtrain, g(w))}. Finally, the
performance of the model is evaluated by computing the
cost function using the test set C(Xtest, g(ŵ)). The value
of the cost function for the best fit model on the training
set is called the in-sample error Ein = C(Xtrain, g(ŵ))
and the value of the cost function on the test set is called
the out-of-sample error Eout = C(Xtest, g(ŵ)).

One of the most important observations we can make
is that the out-of-sample error is almost always greater
than the in-sample error, i.e. Eout � Ein. We explore
this point further in Sec. VI and its accompanying note-
book. Splitting the data into mutually exclusive train-
ing and test sets provides an unbiased estimate for the
predictive performance of the model – this is known as
cross-validation in the ML and statistics literature. In
many applications of classical statistics, we start with a
mathematical model that we assume to be true (e.g., we
may assume that Hooke’s law is true if we are observing
a mass-spring system) and our goal is to estimate the
value of some unknown model parameters (e.g., we do
not know the value of the spring stiffness). Problems in
ML, by contrast, typically involve inference about com-
plex systems where we do not know the exact form of the
mathematical model that describes the system. There-
fore, it is not uncommon for ML researchers to have mul-
tiple candidate models that need to be compared. This
comparison is usually done using Eout and the model that
minimizes this out-of-sample error is chosen as the best
model (i.e. model selection). Note that once we select
the best model on the basis of its performance on Eout,
the real-world performance of the winning model should
be expected to be slightly worse because the test data
was now used in the fitting procedure.

B. Polynomial Regression

In the previous section, we mentioned that multiple
candidate models are typically compared using the out-
of-sample error Eout. It may be at first surprising that
the model that has the lowest out-of-sample error Eout

usually does not have the lowest in-sample error Ein.
Therefore, if our goal is to obtain a model that is use-
ful for prediction we do not want to choose the model
that provides the best explanation for the current obser-
vations. At first glance, the observation that the model
providing the best explanation for the current dataset
probably will not provide the best explanation for future
datasets is very counter-intuitive.

Moreover, the discrepancy between Ein and Eout be-
comes more and more important, as the complexity of our
data, and the models we use to make predictions, grows.
As the number of parameters in the model increases,
we are forced to work in high-dimensional spaces. The
“curse of dimensionality” ensures that many phenomena
that are absent or rare in low-dimensional spaces become
generic. For example, the nature of distance changes in
high dimensions, as evidenced in the derivation of the
Maxwell distribution in statistical physics where the fact
that all the volume of a d-dimensional sphere of radius
r is contained in a small spherical shell around r is ex-
ploited. Almost all critical points of a function (i.e., the
points where all derivatives vanish) are saddles rather
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turn our focus to unsupervised learning. We start with
data visualization and dimensionality reduction before
proceeding to a detailed treatment of clustering. Our
discussion of clustering naturally leads to an examina-
tion of variational methods and their close relationship
with mean-field theory. The review continues with a
discussion of deep unsupervised learning, focusing on
energy-based models, such as Restricted Boltzmann Ma-
chines (RBMs) and Deep Boltzmann Machines (DBMs).
Then we discuss two new and extremely popular model-
ing frameworks for unsupervised learning, generative ad-
versarial networks (GANs) and variational autoencoders
(VAEs). We conclude the review with an outlook and
discussion of promising research directions at the inter-
section physics and ML.

II. WHY IS MACHINE LEARNING DIFFICULT?

A. Setting up a problem in ML and data science

Almost every problem in ML and data science starts
with the same ingredients. The first ingredient is the
dataset X. The second is the model g(w), which is a
function of the parameters w. The final ingredient is the
cost function C(X, g(w)) that allows us to judge how well
the model g(w) explains, or in general performs on, the
observations X. The model is fit by finding the value of
w that minimizes the cost function. For example, one
commonly used cost function is the squared error. Min-
imizing the squared error cost function is known as the
method of least squares, and is typically appropriate for
experiments with Gaussian measurement errors.

ML researchers and data scientists follow a standard
recipe to obtain models that are useful for prediction
problems. We will see why this is necessary in the fol-
lowing sections, but it is useful to present the recipe up
front to provide context. The first step in the analysis
is to randomly divide the dataset X into two mutually
exclusive groups Xtrain and Xtest called the training and
test sets. The fact that this must be the first step should
be heavily emphasized – performing some analysis (such
as using the data to select important variables) before
partitioning the data is a common pitfall that can lead
to incorrect conclusions. Typically, the majority of the
data are partitioned into the training set (e.g., 90%) with
the remainder going into the test set. The model is fit by
minimizing the cost function using only the data in the
training set ŵ = argminw {C(Xtrain, g(w))}. Finally, the
performance of the model is evaluated by computing the
cost function using the test set C(Xtest, g(ŵ)). The value
of the cost function for the best fit model on the training
set is called the in-sample error Ein = C(Xtrain, g(ŵ))
and the value of the cost function on the test set is called
the out-of-sample error Eout = C(Xtest, g(ŵ)).

One of the most important observations we can make
is that the out-of-sample error is almost always greater
than the in-sample error, i.e. Eout � Ein. We explore
this point further in Sec. VI and its accompanying note-
book. Splitting the data into mutually exclusive train-
ing and test sets provides an unbiased estimate for the
predictive performance of the model – this is known as
cross-validation in the ML and statistics literature. In
many applications of classical statistics, we start with a
mathematical model that we assume to be true (e.g., we
may assume that Hooke’s law is true if we are observing
a mass-spring system) and our goal is to estimate the
value of some unknown model parameters (e.g., we do
not know the value of the spring stiffness). Problems in
ML, by contrast, typically involve inference about com-
plex systems where we do not know the exact form of the
mathematical model that describes the system. There-
fore, it is not uncommon for ML researchers to have mul-
tiple candidate models that need to be compared. This
comparison is usually done using Eout and the model that
minimizes this out-of-sample error is chosen as the best
model (i.e. model selection). Note that once we select
the best model on the basis of its performance on Eout,
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B. Polynomial Regression
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of-sample error Eout. It may be at first surprising that
the model that has the lowest out-of-sample error Eout

usually does not have the lowest in-sample error Ein.
Therefore, if our goal is to obtain a model that is use-
ful for prediction we do not want to choose the model
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vations. At first glance, the observation that the model
providing the best explanation for the current dataset
probably will not provide the best explanation for future
datasets is very counter-intuitive.
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comes more and more important, as the complexity of our
data, and the models we use to make predictions, grows.
As the number of parameters in the model increases,
we are forced to work in high-dimensional spaces. The
“curse of dimensionality” ensures that many phenomena
that are absent or rare in low-dimensional spaces become
generic. For example, the nature of distance changes in
high dimensions, as evidenced in the derivation of the
Maxwell distribution in statistical physics where the fact
that all the volume of a d-dimensional sphere of radius
r is contained in a small spherical shell around r is ex-
ploited. Almost all critical points of a function (i.e., the
points where all derivatives vanish) are saddles rather

One of the most important observations we can make is that the out-of-sample error is almost 
always greater than the in-sample error, i.e. Eout ≥ Ein. 

The model is fit by minimizing the cost function using only the data in the training 
set w = argminw {C(Xtrain, g(w))}. 

Models with a large difference 
between the in-sample and out-of-
sample errors are said to “overfit” the 
data.  

One of the lessons of statistical learning 
theory is that it is not enough to simply 
minimize the training error, since the out-
of-sample error can still be large. 

Number of data
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FIG. 4 Schematic of typical in-sample and out-of-

sample error as a function of training set size. The
typical in-sample or training error, Ein, out-of-sample or gen-
eralization error, Eout, bias, variance, and difference of errors
as a function of the number of training data points. The
schematic assumes that the number of data points is large (in
particular, the schematic does not show the initial drop in
Ein for small amounts of data), and that our model cannot
exactly fit the true function f(x).

crease with the number of data points in this high data
regime. As the number of data points gets large, the sam-
pling noise decreases and the training data set becomes a
better and better representative of the true distribution
from which the data is drawn. For this reason, in the in-
finite data limit, the in-sample and out-of-sample errors
must approach the same value, which is called the “bias”
of our model.

The bias represents the best our model could do if we
had an infinite amount of training data to beat down
sampling noise. The bias is a property of the kind of
functions, or model class, we are using to approximate
f(x). In general, the more complex the model class we
use, the smaller the bias. However, we do not generally
have an infinite amount of data. For this reason, to get
best predictive power it is better to minimize the out-of-
sample error, Eout rather than the bias. As shown graph-
ically in Figure 4, Eout can be naturally decomposed into
a bias, which measures how well we can hypothetically
do in the infinite data limit, and a variance which mea-
sures the typical errors introduced in training our model
due to sampling noise from having a finite training set.

The final quantity shown in Figure 4 is the difference
between the generalization and training error. It mea-
sures how well our in-sample error reflects the out-of-
sample error, and measures how much worse we would
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FIG. 5 Bias-Variance tradeoff and model complexity.

This schematic shows the typical out-of-sample error Eout as
function of the model complexity for a training dataset of fixed
size. Notice how the bias always decreases with model com-
plexity, but the variance, i.e. fluctuation in performance due
to finite size sampling effects, increases with model complex-
ity. Thus, optimal performance is achieved at intermediate
levels of model complexity.

do on a new data set compared to our training data. For
this reason, the difference between these errors is pre-
cisely the quantity that measures the difference between
fitting and predicting. Models with a large difference be-
tween the in-sample and out-of-sample errors are said to
“overfit” the data. One of the lessons of statistical learn-
ing theory is that it is not enough to simply minimize
the training error, since the out-of-sample error can still
be large. As we will see in our discussion of regression in
Sec. VI, this insight naturally leads to the idea of “regu-
larization”.

The second schematic, shown in Figure 5, shows the
out-of-sample, or test, error Eout as function of “model
complexity”. Model complexity is a very subtle idea and
defining it precisely is one of the great achievements of
statistical learning theory. However, roughly speaking,
model complexity is a measure of the complexity of the
model class we are using to approximate the true function
f(x). For example, a model with more free parameters is
generally more complex than one with fewer fitting pa-
rameters1. In the example of polynomial regression dis-
cussed above, higher-order polynomials are more complex
than the linear model. If we consider a training dataset
of a fixed size, Eout will be a non-monotonic function
of the model complexity, and is generally minimized for
models with intermediate complexity. The underlying

1 Note that models with more parameters are not always more
complex. One neat example in the context of one-dimensional
regression in given in (Friedman et al., 2001), Figure 7.5.

This  schematic  shows  the 
typical out-of-sample error 
Eout  as  function  of  the 
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always  decreases  with 
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variance, i.e. fluctuation in 
performance  due  to  finite 
size  sampling  effects, 
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complexity.  Thus,  optimal 
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at  intermediate  levels  of 
model complexity. 

Even though using a more complicated model always reduces the bias, at some 
point the model becomes too complex for the amount of training data and the 

generalization error becomes large due to high variance.

Model complexity



to minimize Eout and maximize our predictive power, it may be more suitable 
to use a more biased model with small variance than a less-biased model with 

large variance. 

This important concept is commonly called the bias-variance tradeoff and gets 
at the heart of why machine learning is difficult.



The bias-variance tradeoff 

We will discuss the bias-variance tradeoff in the context of continuous 
predictions such as regression
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FIG. 6 Bias-Variance tradeoff. Another useful depiction
of the bias-variance tradeoff is to think about how Eout varies
as we consider different training data sets of a fixed size. A
more complex model (green) will exhibit larger fluctuations
(variance) due to finite size sampling effects than the sim-
pler model (black). However, the average over all the trained
models (bias) is closer to the true model for the more complex
model.

reason for this is that, even though using a more com-
plicated model always reduces the bias, at some point
the model becomes too complex for the amount of train-
ing data and the generalization error becomes large due
to high variance. Thus, to minimize Eout and maximize
our predictive power, it may be more suitable to use a
more biased model with small variance than a less-biased
model with large variance. This important concept is
commonly called the bias-variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias-variance tradeoff is
shown in Figure 6. In this figure, we imagine training
a complex model (shown in green) and a simpler model
(shown in black) many, many times on different training
sets of a fixed size N . Due to the sampling noise from
having finite size data sets, the learned models will differ
for each choice of training sets. In general, more complex
models need a larger amount of training data. For this
reason, the fluctuations in the learned models (variance)
will be much larger for the more complex model than the
simpler model. However, if we consider the asymptotic
performance as we increase the size of the training set
(the bias), it is clear that the complex model will even-
tually perform better than the simpler model. Thus, de-
pending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make
predictions.

B. Bias-Variance Decomposition

In this section, we dig further into the central princi-
ple that underlies much of machine learning: the bias-
variance tradeoff. Roughly speaking, this says that there
is a tradeoff between how expressive our model class is
and how sensitive the fitted model is to sample fluctu-
ations in the training data. That is, the more (less)
expressive the model, the larger (smaller) the fluctua-
tions. Less expressive models exhibit bias in what they
are able to fit, and thus there is a tradeoff between the
bias and the variance of the fitted model. Oftentimes in
physics, we are mostly concerned with expressivity, e.g.
whether the true ground state wavefunction can be well-
approximated by a class of variational wavefunctions such
as a matrix product state. In the learning context, there
is the additional challenge of finding the best variational
state with finite sampling. We will see that while this
concept is a generally useful heuristic to keep in mind,
it is a mathematically precise statement when decompos-
ing the squared error. Finally, we note that a better term
would be the bias-variance decomposition, as it is possible
to have high bias and high variance.

We will discuss the bias-variance tradeoff in the con-
text of continuous predictions such as regression. How-
ever, many of the intuitions and ideas discussed here also
carry over to classification tasks. Consider a dataset L
consisting of the data XL = {(yj ,xj), j = 1 . . . N}. Let
us assume that the true data is generated from a noisy
model

y = f(x) + ✏ (2)

where ✏ is normally distributed with mean zero and stan-
dard deviation �✏.

Assume that we have a statistical procedure (e.g. least-
squares regression) for forming a predictor ĝL(x) that
gives the prediction of our model for a new data point x.
This estimator is chosen by minimizing a cost function
which we take to be the squared error

C(X, ĝ(x)) =
X

i

(yi � ĝL(xi))
2. (3)

We are interested in the generalization error on all data
drawn from the true model, not just the error on the
particular training dataset L that we have in hand. This
is just the expectation of the cost function over many
different data sets {Lj}. Denote this expectation value
by EL. In other words, we can view ĝL as a stochastic
functional that depends on the dataset L and we can
think of EL as the expected value of the functional if we
drew an infinite number of datasets {L1, L2, . . .}.

We would also like to average over different instances
of the “noise” ✏ and we denote the expectation value over
the noise by E✏. Thus, we can decompose the expected
generalization error as
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reason for this is that, even though using a more com-
plicated model always reduces the bias, at some point
the model becomes too complex for the amount of train-
ing data and the generalization error becomes large due
to high variance. Thus, to minimize Eout and maximize
our predictive power, it may be more suitable to use a
more biased model with small variance than a less-biased
model with large variance. This important concept is
commonly called the bias-variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias-variance tradeoff is
shown in Figure 6. In this figure, we imagine training
a complex model (shown in green) and a simpler model
(shown in black) many, many times on different training
sets of a fixed size N . Due to the sampling noise from
having finite size data sets, the learned models will differ
for each choice of training sets. In general, more complex
models need a larger amount of training data. For this
reason, the fluctuations in the learned models (variance)
will be much larger for the more complex model than the
simpler model. However, if we consider the asymptotic
performance as we increase the size of the training set
(the bias), it is clear that the complex model will even-
tually perform better than the simpler model. Thus, de-
pending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make
predictions.

B. Bias-Variance Decomposition

In this section, we dig further into the central princi-
ple that underlies much of machine learning: the bias-
variance tradeoff. Roughly speaking, this says that there
is a tradeoff between how expressive our model class is
and how sensitive the fitted model is to sample fluctu-
ations in the training data. That is, the more (less)
expressive the model, the larger (smaller) the fluctua-
tions. Less expressive models exhibit bias in what they
are able to fit, and thus there is a tradeoff between the
bias and the variance of the fitted model. Oftentimes in
physics, we are mostly concerned with expressivity, e.g.
whether the true ground state wavefunction can be well-
approximated by a class of variational wavefunctions such
as a matrix product state. In the learning context, there
is the additional challenge of finding the best variational
state with finite sampling. We will see that while this
concept is a generally useful heuristic to keep in mind,
it is a mathematically precise statement when decompos-
ing the squared error. Finally, we note that a better term
would be the bias-variance decomposition, as it is possible
to have high bias and high variance.

We will discuss the bias-variance tradeoff in the con-
text of continuous predictions such as regression. How-
ever, many of the intuitions and ideas discussed here also
carry over to classification tasks. Consider a dataset L
consisting of the data XL = {(yj ,xj), j = 1 . . . N}. Let
us assume that the true data is generated from a noisy
model

y = f(x) + ✏ (2)

where ✏ is normally distributed with mean zero and stan-
dard deviation �✏.

Assume that we have a statistical procedure (e.g. least-
squares regression) for forming a predictor ĝL(x) that
gives the prediction of our model for a new data point x.
This estimator is chosen by minimizing a cost function
which we take to be the squared error

C(X, ĝ(x)) =
X
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(yi � ĝL(xi))
2. (3)

We are interested in the generalization error on all data
drawn from the true model, not just the error on the
particular training dataset L that we have in hand. This
is just the expectation of the cost function over many
different data sets {Lj}. Denote this expectation value
by EL. In other words, we can view ĝL as a stochastic
functional that depends on the dataset L and we can
think of EL as the expected value of the functional if we
drew an infinite number of datasets {L1, L2, . . .}.

We would also like to average over different instances
of the “noise” ✏ and we denote the expectation value over
the noise by E✏. Thus, we can decompose the expected
generalization error as

Assume that we have a statistical procedure (e.g. least- squares regression) for forming a predictor 
gˆL(x) that gives the prediction of our model for a new data point x. 

This estimator is chosen by minimizing a cost function which we take to be the squared error 
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reason for this is that, even though using a more com-
plicated model always reduces the bias, at some point
the model becomes too complex for the amount of train-
ing data and the generalization error becomes large due
to high variance. Thus, to minimize Eout and maximize
our predictive power, it may be more suitable to use a
more biased model with small variance than a less-biased
model with large variance. This important concept is
commonly called the bias-variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias-variance tradeoff is
shown in Figure 6. In this figure, we imagine training
a complex model (shown in green) and a simpler model
(shown in black) many, many times on different training
sets of a fixed size N . Due to the sampling noise from
having finite size data sets, the learned models will differ
for each choice of training sets. In general, more complex
models need a larger amount of training data. For this
reason, the fluctuations in the learned models (variance)
will be much larger for the more complex model than the
simpler model. However, if we consider the asymptotic
performance as we increase the size of the training set
(the bias), it is clear that the complex model will even-
tually perform better than the simpler model. Thus, de-
pending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make
predictions.
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In this section, we dig further into the central princi-
ple that underlies much of machine learning: the bias-
variance tradeoff. Roughly speaking, this says that there
is a tradeoff between how expressive our model class is
and how sensitive the fitted model is to sample fluctu-
ations in the training data. That is, the more (less)
expressive the model, the larger (smaller) the fluctua-
tions. Less expressive models exhibit bias in what they
are able to fit, and thus there is a tradeoff between the
bias and the variance of the fitted model. Oftentimes in
physics, we are mostly concerned with expressivity, e.g.
whether the true ground state wavefunction can be well-
approximated by a class of variational wavefunctions such
as a matrix product state. In the learning context, there
is the additional challenge of finding the best variational
state with finite sampling. We will see that while this
concept is a generally useful heuristic to keep in mind,
it is a mathematically precise statement when decompos-
ing the squared error. Finally, we note that a better term
would be the bias-variance decomposition, as it is possible
to have high bias and high variance.

We will discuss the bias-variance tradeoff in the con-
text of continuous predictions such as regression. How-
ever, many of the intuitions and ideas discussed here also
carry over to classification tasks. Consider a dataset L
consisting of the data XL = {(yj ,xj), j = 1 . . . N}. Let
us assume that the true data is generated from a noisy
model

y = f(x) + ✏ (2)

where ✏ is normally distributed with mean zero and stan-
dard deviation �✏.

Assume that we have a statistical procedure (e.g. least-
squares regression) for forming a predictor ĝL(x) that
gives the prediction of our model for a new data point x.
This estimator is chosen by minimizing a cost function
which we take to be the squared error

C(X, ĝ(x)) =
X
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(yi � ĝL(xi))
2. (3)

We are interested in the generalization error on all data
drawn from the true model, not just the error on the
particular training dataset L that we have in hand. This
is just the expectation of the cost function over many
different data sets {Lj}. Denote this expectation value
by EL. In other words, we can view ĝL as a stochastic
functional that depends on the dataset L and we can
think of EL as the expected value of the functional if we
drew an infinite number of datasets {L1, L2, . . .}.

We would also like to average over different instances
of the “noise” ✏ and we denote the expectation value over
the noise by E✏. Thus, we can decompose the expected
generalization error as

we can view gˆL as a stochastic functional that depends on the dataset L and 
we can think of EL as the expected value of the functional if we drew an 

infinite number of datasets {L1, L2, . . .}.



We would also like to average over different instances of the “noise” ε and we 
denote the expectation value over the noise by Eε. Thus, we can decompose the 

expected generalization error as
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EL,✏[C(X, ĝ(x))] = EL,✏

"
X

i

(yi � ĝL(xi))
2

#

= EL,✏

"
X

i

(yi � f(xi) + f(xi) � ĝL(xi))
2

#

=
X

i

E✏[(yi � f(xi))
2] + EL,✏[(f(xi) � ĝL(xi))

2] + 2E✏[yi � f(xi)]EL[f(xi) � ĝL(xi)]

=
X

i

�2
✏ + EL[(f(xi) � ĝL(xi))

2], (4)

where in the last line we used the fact that our noise has zero mean and variance �2
✏ and the sum over i applies to all

terms. It is also helpful to further decompose the second term as follows:

EL[(f(xi) � ĝL(xi))
2] = EL[(f(xi) � EL[ĝL(xi)] + EL[ĝL(xi)] � ĝL(xi))

2]

= EL[(f(xi) � EL[ĝL(xi)])
2] + EL[(ĝL(xi) � EL[ĝL(xi)])

2]

+ 2EL[(f(xi) � EL[ĝL(xi)])(ĝL(xi) � EL[ĝL(xi)])]

= (f(xi) � EL[ĝL(xi)])
2 + EL[(ĝL(xi) � EL[ĝL(xi)])

2]. (5)

The first term is called the bias

Bias2 =
X

i

(f(xi) � EL[ĝL(xi)])
2 (6)

and measures the deviation of the expectation value of
our estimator (i.e. the asymptotic value of our estimator
in the infinite data limit) from the true value. The second
term is called the variance

V ar =
X

i

EL[(ĝL(xi) � EL[ĝL(xi)])
2], (7)

and measures how much our estimator fluctuates due to
finite-sample effects. Combining these expressions, we
see that the expected out-of-sample error of our model
can be decomposed as

Eout = EL,✏[C(X, ĝ(x))] = Bias2 + V ar + Noise. (8)

The bias-variance tradeoff summarizes the fundamen-
tal tension in machine learning, particularly supervised
learning, between the complexity of a model and the
amount of training data needed to train it. Since data
is often limited, in practice it is often useful to use a
less-complex model with higher bias – a model whose
asymptotic performance is worse than another model –
because it is easier to train and less sensitive to sampling
noise arising from having a finite-sized training dataset
(smaller variance). This is the basic intuition behind the
schematics in Figs. 4, 5, and 6.

IV. GRADIENT DESCENT AND ITS GENERALIZATIONS

Almost every problem in ML and data science starts
with the same ingredients: a dataset X, a model g(✓),

which is a function of the parameters ✓ and a cost func-
tion C(X, g(✓)) that allows us to judge how well the
model g(✓) explains the observations X. The model is
fit by finding the values of ✓ that minimize the cost func-
tion. In this section, we discuss one of the most powerful
and widely used classes of methods for performing this
minimization – gradient descent and its generalizations.
The basic idea behind these methods is straightforward:
iteratively adjust the parameters in the direction where
the gradient of the cost function is large and negative.
In this way, the training procedure ensures the parame-
ters flow towards a local minimum of the cost function.
However, in practice gradient descent is full of surprises
and a series of ingenious tricks have been developed by
the optimization and machine learning communities to
improve the performance of these algorithms.

The underlying reason why training a machine learn-
ing algorithm is difficult is that the cost functions we
wish to optimize are usually complicated, rugged, non-
convex functions in a high-dimensional space with many
local minima. To make things even more difficult, we
almost never have access to the true function we wish
to minimize but, instead must estimate this function di-
rectly from data. In modern applications, both the size
of the dataset and the number of parameters we wish to
fit is often enormous (millions of parameters and exam-
ples). The goal of this chapter is to explain how gradient
descent methods can be used to train machine learning
algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used
methods and give intuition for why they work. We
also include some practical tips for improving the per-
formance of stochastic gradient descent (Bottou, 2012;
LeCun et al., 1998b). To help the reader gain more in-
tuition about gradient descent and its variants, we have

13
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2] + 2E✏[yi � f(xi)]EL[f(xi) � ĝL(xi)]
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The first term is called the bias
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(f(xi) � EL[ĝL(xi)])
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and measures the deviation of the expectation value of
our estimator (i.e. the asymptotic value of our estimator
in the infinite data limit) from the true value. The second
term is called the variance

V ar =
X

i

EL[(ĝL(xi) � EL[ĝL(xi)])
2], (7)

and measures how much our estimator fluctuates due to
finite-sample effects. Combining these expressions, we
see that the expected out-of-sample error of our model
can be decomposed as

Eout = EL,✏[C(X, ĝ(x))] = Bias2 + V ar + Noise. (8)

The bias-variance tradeoff summarizes the fundamen-
tal tension in machine learning, particularly supervised
learning, between the complexity of a model and the
amount of training data needed to train it. Since data
is often limited, in practice it is often useful to use a
less-complex model with higher bias – a model whose
asymptotic performance is worse than another model –
because it is easier to train and less sensitive to sampling
noise arising from having a finite-sized training dataset
(smaller variance). This is the basic intuition behind the
schematics in Figs. 4, 5, and 6.

IV. GRADIENT DESCENT AND ITS GENERALIZATIONS

Almost every problem in ML and data science starts
with the same ingredients: a dataset X, a model g(✓),

which is a function of the parameters ✓ and a cost func-
tion C(X, g(✓)) that allows us to judge how well the
model g(✓) explains the observations X. The model is
fit by finding the values of ✓ that minimize the cost func-
tion. In this section, we discuss one of the most powerful
and widely used classes of methods for performing this
minimization – gradient descent and its generalizations.
The basic idea behind these methods is straightforward:
iteratively adjust the parameters in the direction where
the gradient of the cost function is large and negative.
In this way, the training procedure ensures the parame-
ters flow towards a local minimum of the cost function.
However, in practice gradient descent is full of surprises
and a series of ingenious tricks have been developed by
the optimization and machine learning communities to
improve the performance of these algorithms.

The underlying reason why training a machine learn-
ing algorithm is difficult is that the cost functions we
wish to optimize are usually complicated, rugged, non-
convex functions in a high-dimensional space with many
local minima. To make things even more difficult, we
almost never have access to the true function we wish
to minimize but, instead must estimate this function di-
rectly from data. In modern applications, both the size
of the dataset and the number of parameters we wish to
fit is often enormous (millions of parameters and exam-
ples). The goal of this chapter is to explain how gradient
descent methods can be used to train machine learning
algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used
methods and give intuition for why they work. We
also include some practical tips for improving the per-
formance of stochastic gradient descent (Bottou, 2012;
LeCun et al., 1998b). To help the reader gain more in-
tuition about gradient descent and its variants, we have

The bias-variance tradeoff 



13
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Eout = EL,✏[C(X, ĝ(x))] = Bias2 + V ar + Noise. (8)

The bias-variance tradeoff summarizes the fundamen-
tal tension in machine learning, particularly supervised
learning, between the complexity of a model and the
amount of training data needed to train it. Since data
is often limited, in practice it is often useful to use a
less-complex model with higher bias – a model whose
asymptotic performance is worse than another model –
because it is easier to train and less sensitive to sampling
noise arising from having a finite-sized training dataset
(smaller variance). This is the basic intuition behind the
schematics in Figs. 4, 5, and 6.

IV. GRADIENT DESCENT AND ITS GENERALIZATIONS

Almost every problem in ML and data science starts
with the same ingredients: a dataset X, a model g(✓),

which is a function of the parameters ✓ and a cost func-
tion C(X, g(✓)) that allows us to judge how well the
model g(✓) explains the observations X. The model is
fit by finding the values of ✓ that minimize the cost func-
tion. In this section, we discuss one of the most powerful
and widely used classes of methods for performing this
minimization – gradient descent and its generalizations.
The basic idea behind these methods is straightforward:
iteratively adjust the parameters in the direction where
the gradient of the cost function is large and negative.
In this way, the training procedure ensures the parame-
ters flow towards a local minimum of the cost function.
However, in practice gradient descent is full of surprises
and a series of ingenious tricks have been developed by
the optimization and machine learning communities to
improve the performance of these algorithms.

The underlying reason why training a machine learn-
ing algorithm is difficult is that the cost functions we
wish to optimize are usually complicated, rugged, non-
convex functions in a high-dimensional space with many
local minima. To make things even more difficult, we
almost never have access to the true function we wish
to minimize but, instead must estimate this function di-
rectly from data. In modern applications, both the size
of the dataset and the number of parameters we wish to
fit is often enormous (millions of parameters and exam-
ples). The goal of this chapter is to explain how gradient
descent methods can be used to train machine learning
algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used
methods and give intuition for why they work. We
also include some practical tips for improving the per-
formance of stochastic gradient descent (Bottou, 2012;
LeCun et al., 1998b). To help the reader gain more in-
tuition about gradient descent and its variants, we have

The bias-variance tradeoff summarizes the fundamental tension in machine learning, particularly 
supervised learning, between the complexity of a model and the amount of training data needed to 
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Since data is often limited, in practice it is often useful to use a less-complex model with higher 
bias – a model whose asymptotic performance is worse than another model – because it is easier 
to train and less sensitive to sampling noise arising from having a finite-sized training dataset 
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FIG. 6 Bias-Variance tradeoff. Another useful depiction
of the bias-variance tradeoff is to think about how Eout varies
as we consider different training data sets of a fixed size. A
more complex model (green) will exhibit larger fluctuations
(variance) due to finite size sampling effects than the sim-
pler model (black). However, the average over all the trained
models (bias) is closer to the true model for the more complex
model.

reason for this is that, even though using a more com-
plicated model always reduces the bias, at some point
the model becomes too complex for the amount of train-
ing data and the generalization error becomes large due
to high variance. Thus, to minimize Eout and maximize
our predictive power, it may be more suitable to use a
more biased model with small variance than a less-biased
model with large variance. This important concept is
commonly called the bias-variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias-variance tradeoff is
shown in Figure 6. In this figure, we imagine training
a complex model (shown in green) and a simpler model
(shown in black) many, many times on different training
sets of a fixed size N . Due to the sampling noise from
having finite size data sets, the learned models will differ
for each choice of training sets. In general, more complex
models need a larger amount of training data. For this
reason, the fluctuations in the learned models (variance)
will be much larger for the more complex model than the
simpler model. However, if we consider the asymptotic
performance as we increase the size of the training set
(the bias), it is clear that the complex model will even-
tually perform better than the simpler model. Thus, de-
pending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make
predictions.

B. Bias-Variance Decomposition

In this section, we dig further into the central princi-
ple that underlies much of machine learning: the bias-
variance tradeoff. Roughly speaking, this says that there
is a tradeoff between how expressive our model class is
and how sensitive the fitted model is to sample fluctu-
ations in the training data. That is, the more (less)
expressive the model, the larger (smaller) the fluctua-
tions. Less expressive models exhibit bias in what they
are able to fit, and thus there is a tradeoff between the
bias and the variance of the fitted model. Oftentimes in
physics, we are mostly concerned with expressivity, e.g.
whether the true ground state wavefunction can be well-
approximated by a class of variational wavefunctions such
as a matrix product state. In the learning context, there
is the additional challenge of finding the best variational
state with finite sampling. We will see that while this
concept is a generally useful heuristic to keep in mind,
it is a mathematically precise statement when decompos-
ing the squared error. Finally, we note that a better term
would be the bias-variance decomposition, as it is possible
to have high bias and high variance.

We will discuss the bias-variance tradeoff in the con-
text of continuous predictions such as regression. How-
ever, many of the intuitions and ideas discussed here also
carry over to classification tasks. Consider a dataset L
consisting of the data XL = {(yj ,xj), j = 1 . . . N}. Let
us assume that the true data is generated from a noisy
model

y = f(x) + ✏ (2)

where ✏ is normally distributed with mean zero and stan-
dard deviation �✏.

Assume that we have a statistical procedure (e.g. least-
squares regression) for forming a predictor ĝL(x) that
gives the prediction of our model for a new data point x.
This estimator is chosen by minimizing a cost function
which we take to be the squared error

C(X, ĝ(x)) =
X

i

(yi � ĝL(xi))
2. (3)

We are interested in the generalization error on all data
drawn from the true model, not just the error on the
particular training dataset L that we have in hand. This
is just the expectation of the cost function over many
different data sets {Lj}. Denote this expectation value
by EL. In other words, we can view ĝL as a stochastic
functional that depends on the dataset L and we can
think of EL as the expected value of the functional if we
drew an infinite number of datasets {L1, L2, . . .}.

We would also like to average over different instances
of the “noise” ✏ and we denote the expectation value over
the noise by E✏. Thus, we can decompose the expected
generalization error as

Thus, depending on the amount of training data, it may be more favorable to 
use a less complex, high-bias model to make predictions.
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parameters are estimated from training data using the iterative Expectation-Maximization (EM) algorithm or Maximum A
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A Gaussian mixture model is a weighted sum ofM component Gaussian densities as given by the equation,

p(x|λ) =
M
∑

i=1

wi g(x|µi,Σi), (1)

where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), wi, i = 1, . . . , M , are the mixture
weights, and g(x|µi,Σi), i = 1, . . . , M , are the component Gaussian densities. Each component density is a D-variate
Gaussian function of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{

−
1

2
(x − µi)

′ Σ−1

i (x − µi)

}

, (2)

with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint that
∑M

i=1
wi = 1.

The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices and mixture weights
from all component densities. These parameters are collectively represented by the notation,
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λ = {wi, µi, Σi} i = 1, . . . , M. (3)

There are several variants on the GMM shown in Equation (3). The covariance matrices, Σi, can be full rank or constrained
to be diagonal. Additionally, parameters can be shared, or tied, among the Gaussian components, such as having a common
covariance matrix for all components, The choice of model configuration (number of components, full or diagonal covariance
matrices, and parameter tying) is often determined by the amount of data available for estimating the GMM parameters and
how the GMM is used in a particular biometric application.

It is also important to note that because the component Gaussian are acting together to model the overall feature density,
full covariance matrices are not necessary even if the features are not statistically independent. The linear combination of
diagonal covariance basis Gaussians is capable of modeling the correlations between feature vector elements. The effect
of using a set of M full covariance matrix Gaussians can be equally obtained by using a larger set of diagonal covariance
Gaussians.

GMMs are often used in biometric systems, most notably in speaker recognition systems, due to their capability of rep-
resenting a large class of sample distributions. One of the powerful attributes of the GMM is its ability to form smooth
approximations to arbitrarily shaped densities. The classical uni-modal Gaussian model represents feature distributions by
a position (mean vector) and a elliptic shape (covariance matrix) and a vector quantizer (VQ) or nearest neighbor model
represents a distribution by a discrete set of characteristic templates [1]. A GMM acts as a hybrid between these two models
by using a discrete set of Gaussian functions, each with their own mean and covariance matrix, to allow a better modeling
capability. Figure 1 compares the densities obtained using a unimodal Gaussian model, a GMM and a VQ model. Plot (a)
shows the histogram of a single feature from a speaker recognition system (a single cepstral value from a 25 second utterance
by a male speaker); plot (b) shows a uni-modal Gaussian model of this feature distribution; plot (c) shows a GMM and its
ten underlying component densities; and plot (d) shows a histogram of the data assigned to the VQ centroid locations of a
10 element codebook. The GMM not only provides a smooth overall distribution fit, its components also clearly detail the
multi-modal nature of the density.
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Fig. 1. Comparison of distribution modeling. (a) histogram of a single cepstral coefficient from a 25 second utterance by a male speaker (b)
maximum likelihood uni-modal Gaussian model (c) GMM and its 10 underlying component densities (d) histogram of the data assigned to
the VQ centroid locations of a 10 element codebook.
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Synonyms

GMM; Mixture model; Gaussian mixture density

Definition

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian
component densities. GMMs are commonly used as a parametric model of the probability distribution of continuousmeasure-
ments or features in a biometric system, such as vocal-tract related spectral features in a speaker recognition system. GMM
parameters are estimated from training data using the iterative Expectation-Maximization (EM) algorithm or Maximum A
Posteriori (MAP) estimation from a well-trained prior model.

Main Body Text

Introduction

A Gaussian mixture model is a weighted sum ofM component Gaussian densities as given by the equation,

p(x|λ) =
M
∑

i=1

wi g(x|µi,Σi), (1)

where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), wi, i = 1, . . . , M , are the mixture
weights, and g(x|µi,Σi), i = 1, . . . , M , are the component Gaussian densities. Each component density is a D-variate
Gaussian function of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{

−
1

2
(x − µi)

′ Σ−1

i (x − µi)

}

, (2)

with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint that
∑M

i=1
wi = 1.

The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices and mixture weights
from all component densities. These parameters are collectively represented by the notation,
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The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices 
and mixture weights  from all component densities 
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λ = {wi, µi, Σi} i = 1, . . . , M. (3)

There are several variants on the GMM shown in Equation (3). The covariance matrices, Σi, can be full rank or constrained
to be diagonal. Additionally, parameters can be shared, or tied, among the Gaussian components, such as having a common
covariance matrix for all components, The choice of model configuration (number of components, full or diagonal covariance
matrices, and parameter tying) is often determined by the amount of data available for estimating the GMM parameters and
how the GMM is used in a particular biometric application.

It is also important to note that because the component Gaussian are acting together to model the overall feature density,
full covariance matrices are not necessary even if the features are not statistically independent. The linear combination of
diagonal covariance basis Gaussians is capable of modeling the correlations between feature vector elements. The effect
of using a set of M full covariance matrix Gaussians can be equally obtained by using a larger set of diagonal covariance
Gaussians.

GMMs are often used in biometric systems, most notably in speaker recognition systems, due to their capability of rep-
resenting a large class of sample distributions. One of the powerful attributes of the GMM is its ability to form smooth
approximations to arbitrarily shaped densities. The classical uni-modal Gaussian model represents feature distributions by
a position (mean vector) and a elliptic shape (covariance matrix) and a vector quantizer (VQ) or nearest neighbor model
represents a distribution by a discrete set of characteristic templates [1]. A GMM acts as a hybrid between these two models
by using a discrete set of Gaussian functions, each with their own mean and covariance matrix, to allow a better modeling
capability. Figure 1 compares the densities obtained using a unimodal Gaussian model, a GMM and a VQ model. Plot (a)
shows the histogram of a single feature from a speaker recognition system (a single cepstral value from a 25 second utterance
by a male speaker); plot (b) shows a uni-modal Gaussian model of this feature distribution; plot (c) shows a GMM and its
ten underlying component densities; and plot (d) shows a histogram of the data assigned to the VQ centroid locations of a
10 element codebook. The GMM not only provides a smooth overall distribution fit, its components also clearly detail the
multi-modal nature of the density.
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Fig. 1. Comparison of distribution modeling. (a) histogram of a single cepstral coefficient from a 25 second utterance by a male speaker (b)
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Given training vectors and a GMM configuration, we wish to estimate the parameters of the GMM, 
λ, which in some sense best matches the distribution of the training feature vectors. 

Maximum Likelihood Parameter Estimation

The aim of ML estimation is to find the model parameters which maximize the likelihood of the 
GMM given the training data. For a sequence of T training vectors X = {x1, . . . , xT }, the GMM 
likelihood, assuming independence between the vectors, can be written as, 
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The use of a GMM for representing feature distributions in a biometric system may also be motivated by the intuitive
notion that the individual component densities may model some underlying set of hidden classes. For example, in speaker
recognition, it is reasonable to assume the acoustic space of spectral related features corresponding to a speaker’s broad pho-
netic events, such as vowels, nasals or fricatives. These acoustic classes reflect some general speaker dependent vocal tract
configurations that are useful for characterizing speaker identity. The spectral shape of the ith acoustic class can in turn be
represented by the mean µi of the ith component density, and variations of the average spectral shape can be represented by
the covariance matrix Σi. Because all the features used to train the GMM are unlabeled, the acoustic classes are hidden in
that the class of an observation is unknown. A GMM can also be viewed as a single-state HMM with a Gaussian mixture
observation density, or an ergodic Gaussian observation HMM with fixed, equal transition probabilities. Assuming inde-
pendent feature vectors, the observation density of feature vectors drawn from these hidden acoustic classes is a Gaussian
mixture [2, 3].
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data. For a sequence of T training vectors X = {x1, . . . ,xT }, the GMM likelihood, assuming independence between the
vectors1, can be written as,

p(X |λ) =
T

∏

t=1

p(xt|λ). (4)

Unfortunately, this expression is a non-linear function of the parameters λ and direct maximization is not possible. However,
ML parameter estimates can be obtained iteratively using a special case of the expectation-maximization (EM) algorithm [5].
The basic idea of the EM algorithm is, beginning with an initial model λ, to estimate a new model λ̄, such that

p(X |λ̄) ≥ p(X |λ). The new model then becomes the initial model for the next iteration and the process is repeated until
some convergence threshold is reached. The initial model is typically derived by using some form of binary VQ estimation.
On each EM iteration, the following re-estimation formulas are used which guarantee a monotonic increase in the model’s

likelihood value,

Mixture Weights

w̄i =
1

T

T
∑

t=1

Pr(i|xt, λ). (5)

Means

µ̄i =

T
∑

t=1

Pr(i|xt, λ) xt

T
∑

t=1

Pr(i|xt, λ)

. (6)

Variances (diagonal covariance)

σ̄2

i =

T
∑

t=1

Pr(i|xt, λ) x2
t

T
∑

t=1

Pr(i|xt, λ)

− µ̄i
2, (7)

where σ2
i , xt, and µi refer to arbitrary elements of the vectors σi

2, xt, and µi, respectively.
1 The independence assumption is often incorrect but needed to make the problem tractable.
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Classification algorithms are used when the desired output is a discrete label.

Classification

Many use cases,  such as determining whether an email  is  spam or not,  have only two possible 
outcomes. This is called binary classification (on the other hand, regression is useful for predicting 
outputs that are continuous)

Types of classification algorithms in Machine Learning:

• Linear Classifiers: Logistic Regression, Naive Bayes Classifier

• Support Vector Machines

• Decision Trees

• Boosted Trees

• Random Forest

• Neural Networks

• Nearest Neighbor



ROC curve ( Receiver Operating Characteristics)

ROC curve is used for visual comparison of classification models which shows the trade-off between 
the true positive rate and the false positive rate. The area under the ROC curve is a measure of 
the accuracy of the model. When a model is closer to the diagonal, it is less accurate and the model 
with perfect accuracy will have an area of 1.0

Classification



Linkage-Based Clustering Algorithms 

Linkage-based clustering is probably the simplest and most straightforward paradigm of clustering. 

They start from the trivial clustering that has each data point as a single-point cluster. Then, repeatedly, these 
algorithms merge the “closest” clusters of the previous clustering.

Two parameters, then, need to be determined to define such an algorithm clearly. 

First,  we have to decide how to measure (or define) the distance between clusters, and, second, we have to 
determine when to stop merging. 

There are many ways of extending d to a measure of distance between domain subsets (or clusters). The most 
common ways are 
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310 Clustering

In the following we survey some of the most popular clustering methods. In
the last section of this chapter we return to the high level discussion of what is
clustering.

22.1 Linkage-Based Clustering Algorithms

Linkage-based clustering is probably the simplest and most straightforward paradigm
of clustering. These algorithms proceed in a sequence of rounds. They start from
the trivial clustering that has each data point as a single-point cluster. Then,
repeatedly, these algorithms merge the “closest” clusters of the previous cluster-
ing. Consequently, the number of clusters decreases with each such round. If kept
going, such algorithms would eventually result in the trivial clustering in which
all of the domain points share one large cluster. Two parameters, then, need to
be determined to define such an algorithm clearly. First, we have to decide how
to measure (or define) the distance between clusters, and, second, we have to
determine when to stop merging. Recall that the input to a clustering algorithm
is a between-points distance function, d. There are many ways of extending d to
a measure of distance between domain subsets (or clusters). The most common
ways are

1. Single Linkage clustering, in which the between-clusters distance is defined
by the minimum distance between members of the two clusters, namely,

D(A,B)
def
= min{d(x, y) : x 2 A, y 2 B}

2. Average Linkage clustering, in which the distance between two clusters is
defined to be the average distance between a point in one of the clusters and
a point in the other, namely,

D(A,B)
def
=

1

|A||B|

X

x2A, y2B

d(x, y)

3. Max Linkage clustering, in which the distance between two clusters is defined
as the maximum distance between their elements, namely,

D(A,B)
def
= max{d(x, y) : x 2 A, y 2 B}.

The linkage-based clustering algorithms are agglomerative in the sense that they
start from data that is completely fragmented and keep building larger and
larger clusters as they proceed. Without employing a stopping rule, the outcome
of such an algorithm can be described by a clustering dendrogram: that is, a tree
of domain subsets, having the singleton sets in its leaves, and the full domain as
its root. For example, if the input is the elements X = {a, b, c, d, e} ⇢ R2 with
the Euclidean distance as depicted on the left, then the resulting dendrogram is
the one depicted on the right:
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2. Average Linkage clustering, in which the distance between two clusters is defined to be the average 
distance between a point in one of the clusters and a point in the other, namely, 

3. Max Linkage clustering, in which the distance between two clusters is defined  as the maximum 
distance between their elements, namely, 



K-means clustering

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled 
data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups 
in the data, with the number of groups represented by the variable K.

The algorithm works iteratively to assign each data point to one of K groups based on the features 
that are provided. Data points are clustered based on feature similarity. 

The results of the K-means clustering algorithm are:

1. The centroids of the K clusters, which can be used to label new data

2. Labels for the training data (each data point is assigned to a single cluster)



K-means clustering

Algorithm

The  Κ-means  clustering  algorithm  uses  iterative  refinement  to  produce  a  final  result.  The 
algorithm inputs are the number of clusters Κ and the data set. The data set is a collection of 
features for  each data point.  The algorithms starts  with initial  estimates for  the  Κ centroids, 
which can either be randomly generated or randomly selected from the data set.

The algorithm then iterates between two steps:

1. Data assigment step:
Each centroid defines one of the clusters. In this step, each data point is assigned to its nearest 
centroid, based on the squared Euclidean distance.

2. Centroid update step:
In this step, the centroids are recomputed. This is done by taking the mean of all data points 
assigned to that centroid's cluster.



K-means clustering

One of the metrics that is commonly used to compare results across different values of K is the 
mean distance between data points and their cluster centroid. Since increasing the number of 
clusters will always reduce the distance to data points, increasing K will always decrease this 
metric, to the extreme of reaching zero when K is the same as the number of data points



K-means clustering 70

J = 10.5, t = 1 a) J = 8.8, t = 10 b)

J = 8.0, t = 20 c)

0 10 20
t

8.0

8.5

9.0

9.5

10.0

10.5 d)

J

FIG. 55 K-means with K = 3 applied to an artificial two-
dimensional dataset. The cluster means at each iteration are
indicated by blue star markers. t indicates the iteration num-
ber and J the value of the objective function. (a) The algo-
rithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)-(c) For well sep-
arated clusters, the algorithm converges rapidly to the true
clusters. (d) The objective function as a function of the it-
eration. J converges after t = 18 iterations for this choice of
random seed.

scales linearly in the size of the data set (more specifi-
cally the complexity is O(KN) per iteration) and is thus
scalable to very large datasets.

As we will see in section XIII.B, K-means is a hard-
assignment limit of the Gaussian mixture model where
all cluster variances are assumed to be the same. This
highlights a common drawback of K-means: if the true
clusters have very different variances (spreads), K-means
can lead to spurious results since the underlying assump-
tion is that the latent model has uniform variances.

2. Hierarchical clustering: Agglomerative methods

Agglomerative clustering is a bottom up approach that
starts from small initial clusters which are then progres-
sively merged to form larger clusters. The merging pro-
cess generates a hierarchy of clusters that can be visu-
alized in the form of a dendrogram (see FIG. 56). This
hierarchy can be useful to analyze the relation between
clusters and the subcomponents of individual clusters.
Agglomerative methods are usually specified by defin-

ing a distance measure between clusters 12. We denote
the distance between clusters X and Y by d(X, Y ) 2 R.
Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the
closest with respect to the distance measure are merged
until a single cluster is left.

Agglometative clustering algorithm Agglomerative
clustering algorithms can thus be summarized as follow:

1. Initialize each point to its own cluster.

2. Given a set of K clusters X1, X2, · · · , XK , merge
clusters until one cluster is left (K = 1):

(a) Find the closest pair of clusters (Xi, Xj):
(i, j) = arg min(i0,j0) d(Xi0 , Xj0)

(b) Merge the pair. Update: K  K � 1

Here we list a few of the most popular distances used
in agglomerative methods, often called linkage methods
in the clustering literature.

1. Single-linkage: the distance between clusters i and
j is defined as the minimum distance between two
elements of the different clusters

d(Xi, Xj) = min
xi2Xi,xj2Xj

||xi � xj ||2. (138)

2. Complete linkage: the distance between clusters i
and j is defined as the maximum distance between
two elements of the different clusters.

d(Xi, Xj) = max
xi2Xi,xj2Xj

||xi � xj ||2 (139)

3. Average linkage: average distance between points
of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj |
X

xi2Xi,xj2Xj

||xi � xj ||2 (140)

4. Ward’s linkage: This distance measure is analogous
to the K-means method as it seeks to minimize the
total inertia. The distance measure is the “error
squared” before and after merging which simplifies
to:

d(Xi, Xj) =
|Xi||Xj |
|Xi [Xj |

(µi � µj)
2. (141)

12 Note that this measure need not be a metric.
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Supervised Learning 
Supervised  learning  adjusts  network  parameters  by  a  direct 
comparison between the actual network output and the desired 
output.  Supervised learning is  a  closed-loop feedback system, 
where the error  is  the feedback signal  .  The error  measure is 
usually defined by the mean squared error (MSE) 
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Fig. 2.1 Learning methods. a Supervised learning. ep = ŷp − yp. b Unsupervised learning.
c Reinforcement learning

on a predefined target set of unlabeled data, the goal being to label the specific target
set.

Multitask learning improves the generalization performance of learners by lever-
aging the domain-specific information contained in the related tasks [30]. Multiple
related tasks are learned simultaneously using a shared representation. In fact, the
training signals for extra tasks serve as an inductive bias [30].

In order to learn accurate models for rare cases, it is desirable to use data and
knowledge from similar cases; this is known as transfer learning. Transfer learning
is a general method for speeding up learning. It exploits the insight that generalization
may occur not only within tasks, but also across tasks. The core idea of transfer is that
experience gained in learning to perform one source task can help improve learning
performance in a related, but different, target task [154]. Transfer learning is related
in spirit to case-based and analogical learning. A theoretical analysis based on an
empirical Bayes perspective exhibits that the number of labeled examples required
for learning with transfer is often significantly smaller than that required for learning
each target independently [154].

Supervised Learning
Supervised learning adjusts network parameters by a direct comparison between the
actual network output and the desired output. Supervised learning is a closed-loop
feedback system, where the error is the feedback signal. The error measure, which
shows the difference between the network output and the output from the training
samples, is used to guide the learning process. The error measure is usually defined
by the mean squared error (MSE)

E = 1
N

N∑

p=1

∥∥ yp − ŷp
∥∥2 , (2.1)

where N is the number of pattern pairs in the sample set, yp is the output part of the
pth pattern pair, and ŷp is the network output corresponding to the pattern pair p.
The error E is calculated anew after each epoch. The learning process is terminated
when E is sufficiently small or a failure criterion is met.

Unsupervised Learning 
Unsupervised  learning  involves  no  target  valures.  It  is  solely 
based on the correlations among the input data, and is used to find 
the significant patterns or features in the input data without the 
help of a teacher 

Reinforcement learning 
is a special case of supervised learning, where the exact desired 
output  is  unknown.  The  teacher  supplies  only  feedback  about 
success or failure of an answer. This is cognitively more plausible 
than  supervised  learning  since  a  fully  specified  correct  answer 
might not always be available to the learner or even the teacher. It 
is based only on the information as to whether or not the actual 
output is close to the estimate. 
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The branch of mathematics concerned with computing gradients is called Differential Calculus. The 
relevant general idea is straightforward. Consider a function y = f(x)
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Computing Gradients and Derivatives

The branch of mathematics concerned with computing gradients is called Differential

Calculus.  The relevant general idea is straightforward.  Consider a function y = f(x) :

The gradient of f(x), at a particular value of x, is the rate of change of f(x) as we change

x, and that can be approximated by Δy/Δx for small Δx.  It can be written exactly as

∂f (x)

∂x
=
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Lim

Δy
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Gradient Descent Minimisation

If we want to change the value of x to minimise a function f(x), what we need to do

depends on the gradient of f(x) at the current value of x.  There are three cases:

If    
∂f

∂x > 0     then     f(x) increases  as  x  increases         so      we should   decrease x

If    
∂f

∂x < 0     then     f(x) decreases  as  x  increases         so      we should   increase x

If    
∂f

∂x = 0      then     f(x) is at a maximum or minimum   so     we should  not change x

In summary, we can decrease f(x) by changing x by the amount:

Δx = xnew − xold = −η
∂f

∂x

where η is a small positive constant specifying how much we change x by, and the

derivative ∂f/∂x tells us which direction to go in.  If we repeatedly use this equation, f(x)

will (assuming η is sufficiently small) keep descending towards a minimum, and hence

this procedure is known as gradient descent minimisation.



Stochastic Gradient Descent  (SGD) 

Gradient descent is an iterative algorithm. We start with an initial value of w (say, w(1) = 0). 
Then, at each iteration, we take a step in the direction of the negative of the gradient at the 
current point.
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the Stochastic Gradient Descent algorithm, along with several useful variants.
We show that SGD enjoys an expected convergence rate similar to the rate
of gradient descent. Finally, we turn to the applicability of SGD to learning
problems.

14.1 Gradient Descent

Before we describe the stochastic gradient descent method, we would like to
describe the standard gradient descent approach for minimizing a di↵erentiable
convex function f(w).
The gradient of a di↵erentiable function f : Rd

! R at w, denoted rf(w),

is the vector of partial derivatives of f , namely, rf(w) =
⇣

@f(w)
@w[1] , . . . ,

@f(w)
@w[d]

⌘
.

Gradient descent is an iterative algorithm. We start with an initial value of w
(say, w(1) = 0). Then, at each iteration, we take a step in the direction of the
negative of the gradient at the current point. That is, the update step is

w(t+1) = w(t)
� ⌘rf(w(t)), (14.1)

where ⌘ > 0 is a parameter to be discussed later. Intuitively, since the gradi-
ent points in the direction of the greatest rate of increase of f around w(t),
the algorithm makes a small step in the opposite direction, thus decreasing the
value of the function. Eventually, after T iterations, the algorithm outputs the
averaged vector, w̄ = 1

T

PT
t=1 w

(t). The output could also be the last vector,
w(T ), or the best performing vector, argmint2[T ] f(w

(t)), but taking the average
turns out to be rather useful, especially when we generalize gradient descent to
nondi↵erentiable functions and to the stochastic case.
Another way to motivate gradient descent is by relying on Taylor approxima-

tion. The gradient of f at w yields the first order Taylor approximation of f
around w by f(u) ⇡ f(w) + hu �w,rf(w)i. When f is convex, this approxi-
mation lower bounds f , that is,

f(u) � f(w) + hu�w,rf(w)i.

Therefore, forw close tow(t) we have that f(w) ⇡ f(w(t))+hw�w(t),rf(w(t))i.
Hence we can minimize the approximation of f(w). However, the approximation
might become loose for w, which is far away from w(t). Therefore, we would like
to minimize jointly the distance between w and w(t) and the approximation of
f around w(t). If the parameter ⌘ controls the tradeo↵ between the two terms,
we obtain the update rule

w(t+1) = argmin
w

1

2
kw �w(t)

k
2 + ⌘

⇣
f(w(t)) + hw �w(t),rf(w(t))i

⌘
.

Solving the preceding by taking the derivative with respect to w and comparing
it to zero yields the same update rule as in Equation (14.1).
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Figure 14.3 An illustration of the gradient descent algorithm (left) and the stochastic
gradient descent algorithm (right). The function to be minimized is
1.25(x+ 6)2 + (y � 8)2. For the stochastic case, the black line depicts the averaged
value of w.

14.3 Stochastic Gradient Descent (SGD)

In stochastic gradient descent we do not require the update direction to be based
exactly on the gradient. Instead, we allow the direction to be a random vector
and only require that its expected value at each iteration will equal the gradient
direction. Or, more generally, we require that the expected value of the random
vector will be a subgradient of the function at the current vector.

Stochastic Gradient Descent (SGD) for minimizing

f(w)

parameters: Scalar ⌘ > 0, integer T > 0
initialize: w(1) = 0
for t = 1, 2, . . . , T
choose vt at random from a distribution such that E[vt |w(t)] 2 @f(w(t))
update w(t+1) = w(t)

� ⌘vt

output w̄ = 1
T

PT
t=1 w

(t)

An illustration of stochastic gradient descent versus gradient descent is given
in Figure 14.3. As we will see in Section 14.5, in the context of learning problems,
it is easy to find a random vector whose expectation is a subgradient of the risk
function.

14.3.1 Analysis of SGD for Convex-Lipschitz-Bounded Functions

Recall the bound we achieved for the GD algorithm in Corollary 14.2. For the
stochastic case, in which only the expectation of vt is in @f(w(t)), we cannot
directly apply Equation (14.3). However, since the expected value of vt is a

In stochastic gradient descent we 
do not require the update direction 
to be based exactly on the gradient. 
Instead, we allow the direction to 
be  a  random  vector  and  only 
require  that  its  expected  value  at 
each  iteration  will  equal  the 
gradient direction. 

Stochastic Gradient Descent: we are minimizing the risk function, and since we do not know D we also do not know 
the gradient of LD(w). SGD circumvents this problem by allowing the optimization procedure to take a step along a 
random direction, as long as the expected value of the direction is the negative of the gradient.



Stochastic Gradient Descent  (SGD) 

The basic idea behind these methods is 
straightforward: iteratively adjust the parameters in 

the direction where the gradient of the cost 
function is large and negative. 



We will use them to model complex relationships between inputs and outputs, to 
find patterns in data.

Neural Networks

An  artificial  neural  network  learning 
algorithm is a learning algorithm that is 
inspired by the structure and functional 
aspects of biological neural networks. 

Computations are structured in terms of 
an  interconnected  group  of  artificial 
neurons, processing information using a 
connectionist  approach  to  computation. 
Modern neural networks are non-linear 
statistical data modeling tools. 



Neural Networks

An action potential occurs when a neuron sends information down an axon, away from the cell 
body. Neuroscientists use other words, such as a "spike" or an "impulse" for the action potential. 
Some event (a stimulus) causes the resting potential to move toward 0 mV. When the depolarization 
reaches about -55 mV a neuron will fire an action potential. This is the threshold. If the neuron does 
not reach this critical threshold level, then no action potential will fire.



Neural Networks

The signals of variable magnitudes arrive at the dendrites. Those input signals 
are  then accumulated in the cell  body of  the neuron,  and if  the accumulated 
signal exceeds a certain threshold, a output signal is generated that which will be 
passed on by the axon.



Neural Networks

Conceptually,  it  is  helpful to divide neural networks into four 
categories:

(i) general purpose neural networks for supervised learning, 
(ii) neural  networks  designed  specifically  for  image  processing,  the  most 

prominent  ex-  ample  of  this  class  being Convolutional  Neural  Networks 
(CNNs), 

(iii) neural networks for sequential data  such as Recurrent Neural Networks 
(RNNs), 

(iv)  neural  networks  for  unsupervised  learning  such  as  Deep  Boltzmann 
Machines. 



First artificial neurons: The McCulloch-Pitts model

The McCulloch-Pitts model was an extremely simple artificial neuron. The inputs 
could be either a zero or a one. And the output was a zero or a one. And each 
input could be either excitatory or inhibitory.

The variables w1, w2 and w3 indicate which input is excitatory, and which one 
is inhibitory. 
If a weight is 1, it is an excitatory input.
If it is -1, it is an inhibitory input.

Warren McCulloch and Walter Pitts, 1943



Neural Networks: One-Neuron Perceptron 

1.2 Neurons 5

ron by a complicated electrochemical reaction. Chemical transmitter substances pass
the synapses and enter the dendrite, changing the electrical potential of the cell body.
When the potential is above a threshold, an electrical pulse or action potential is sent
along the axon. After releasing the pulse, the neuron returns to its resting potential.
The action potential causes a release of certain biochemical agents for transmitting
messages are to the dendrites of nearby neurons. These biochemical transmitters may
have either an excitatory or inhibitory effect on neighboring neurons. A synapse that
increases the potential is excitatory, whereas a synapse that decreases it is inhibitory.

Synaptic connections exhibit plasticity—long-term changes in the strength of con-
nections in response to the pattern of stimulation. Neurons also form new connections
with other neurons, and sometimes entire collections of neurons can migrate from
one place to another. These mechanisms are thought to form the basis for learning in
the brain. Synaptic plasticity is a basic biological mechanism underlying learning and
memory. Inspired by this, a large number of learning rules, specifying how activity
and training experience change synaptic efficacies [14 ], have been advanced.

1.2.1 The McCulloch–Pitts Neuron Model

A neuron is a basic processing unit in a neural network. It is a node that processes
all fan-in from other nodes and generates an output according to a transfer function
called the activation function. The activation function represents a linear or nonlinear
mapping from the input to the output and is denoted by φ(·). The variable synapses
is modelled by weights. The McCulloch–Pitts neuron model [27 ], which employs
the sigmoidal activation function, was inspired biologically.

Figure 1.2 illustrates the simple McCulloch–Pitts neuron model. The output of
the neuron is given by

net =
J1∑

i=1

wi xi − θ = wT x − θ, (1.1)

y = φ(net), (1.2)

Fig. 1.2 The mathematical
model of McCulloch–Pitts
neuron
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Rosenblatt, 1958 Frank Rosenblatt published the first concept of the Perceptron learning rule

A perceptron receives multiple input signals, and if the sum of the input signals exceed a 
certain threshold it either returns a signal or remains “silent” otherwise

The Perceptron Learning Rule

1) Initialize the weights to 0 or small random numbers
2) For each training sample x(i)
1. Calculate the output value.
2. Update the weights

wj := wj +Δwj

Δwj=η(target(i) − output(i))x(i)

The activation function represents a linear or nonlinear mapping from the input to the output and is denoted by φ(·) 

The output of the neuron 
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the brain. Synaptic plasticity is a basic biological mechanism underlying learning and
memory. Inspired by this, a large number of learning rules, specifying how activity
and training experience change synaptic efficacies [14 ], have been advanced.

1.2.1 The McCulloch–Pitts Neuron Model

A neuron is a basic processing unit in a neural network. It is a node that processes
all fan-in from other nodes and generates an output according to a transfer function
called the activation function. The activation function represents a linear or nonlinear
mapping from the input to the output and is denoted by φ(·). The variable synapses
is modelled by weights. The McCulloch–Pitts neuron model [27 ], which employs
the sigmoidal activation function, was inspired biologically.

Figure 1.2 illustrates the simple McCulloch–Pitts neuron model. The output of
the neuron is given by

net =
J1∑

i=1

wi xi − θ = wT x − θ, (1.1)

y = φ(net), (1.2)

Fig. 1.2 The mathematical
model of McCulloch–Pitts
neuron
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FIG. 35 Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear
functions that do not saturate for large inputs (bottom row) rather than saturating functions (top row).

data (i.e. discrete labels) or a linear regression layer in
the case of continuous outputs. Thus, the whole neural
network can be thought of as a complicated nonlinear
transformation of the inputs x into an output ŷ that de-
pends on the weights and biases of all the neurons in the
input, hidden, and output layers.

The use of hidden layers greatly expands the represen-
tational power of a neural net when compared with a sim-
ple soft-max or linear regression network. Perhaps, the
most formal expression of the increased representational
power of neural networks (also called the expressivity) is
the universal approximation theorem which states that a
neural network with a single hidden layer can approxi-
mate any continuous, multi-input/multi-output function
with arbitrary accuracy. The reader is strongly urged
to read the beautiful graphical proof of the theorem in
Chapter 4 of Nielsen’s free online book (Nielsen, 2015).
The basic idea behind the proof is that hidden neurons
allow neural networks to generate step functions with ar-
bitrary offsets and heights. These can then be added
together to approximate arbitrary functions. The proof
also makes clear that the more complicated a function,
the more hidden units (and free parameters) are needed
to approximate it. Hence, the applicability of the ap-
proximation theorem to practical situations should not
be overemphasized. In physics, a good analogy are ma-
trix product states, which can approximate any quantum
many-body state to an arbitrary accuracy, provided the
bond dimension can be increased arbitrarily – a severe
requirement not met in any practical implementation of
the theory.

Modern neural networks generally contain multiple

hidden layers (hence the ‘deep’ in deep learning). There
are many ideas of why such deep architectures are fa-
vorable for learning. Increasing the number of layers in-
creases the number of parameters and hence the represen-
tational power of neural networks. Indeed, recent numer-
ical experiments suggests that as long as the number of
parameters is larger than the number of data points, cer-
tain classes of neural networks can fit arbitrarily labeled
random noise samples (Zhang et al., 2016). This suggests
that large neural networks of the kind used in practice can
express highly complex functions. Adding hidden layers
is also thought to allow neural nets to learn more complex
features from the data. Work on convolutional networks
suggests that the first few layers of a neural network learn
simple, “low-level” features that are then combined into
higher-level, more abstract features in the deeper layers.
Other works suggest that it is computationally and al-
gorithmically easier to train deep networks rather than
shallow, wider nets, though this is still an area of major
controversy and active research (Mhaskar et al., 2016).

Choosing the exact network architecture for a neural
network remains an art that requires extensive numer-
ical experimentation and intuition, and is often times
problem-specific. Both the number of hidden layers and
the number of neurons in each layer can affect the per-
formance of a neural network. There seems to be no
single recipe for the right architecture for a neural net
that works best. However, a general rule of thumb that
seems to be emerging is that the number of parameters in
the neural net should be large enough to prevent under-
fitting (see theoretical discussion in (Advani and Saxe,
2017)).

Frank Rosenblatt published the first concept of the Perceptron learning rule
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Fig. 3.2 Architecture of the
Single-Layer Perceptron
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))
corresponds to all the activation

functions of the neurons.
The problem of finding the weights of a single sigmoidal neuron that minimize

the quadratic training error proves to be NP-hard [42]. The adaptation of W is
error driven, which can be according to Rosenblatt’s perceptron learning algorithm
[38, 39 ] or according to the LMS algorithm based on the adaline model [45 ].

3.3 Perceptron Learning Algorithm

Rosenblatt proved the perceptron convergence theorem for classification prob-
lems [39 ].

Theorem 3.1 (Perceptron convergence) Given a one-neuron perceptron and input
patterns x∈ X from two linearly separable classes. Let the patterns be presented in
an arbitrary sequence in each epoch. Then, starting from an arbitrary initial state, the
perceptron learning procedure always converges and yields a decision hyperplane
between the two classes in finite time.

From the perceptron convergence theorem, the weights of the perceptron will
converge to a fixed point within a finite number of updates for a set of linearly
separable input patterns. The perceptron convergence theorem has been extended for
the MLP, stating that the pattern mode BP algorithm converges to an optimal solution
for linearly separable patterns with no upper bound on the learning rate [22].

The perceptron convergence theorem can be proved by minimizing the following
perceptron criterion function using the gradient-descent method:

E(w) =
∑

x ∈X

(
−wT x

)
, (3.8)

where X is the set of samples misclassified by w. Thus, the weights are modified
in such a manner as to reduce the number of misclassifications. The perceptron con-
vergence theorem can be easily extended to the single-layer perceptron by extending
the perceptron learning algorithm from one neuron to multiple neurons.

Neural Networks: Single-Layer Perceptron 

When more neurons with the hard-limiter activation function are used, we have a single-layer 
perceptron.

The single-layer perceptron can be used to classify input vector data x into more classes. 
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and the hyperbolic tangent function

φ(x) = tanh(βx). (3.5)

In these functions, β is a gain, typically selected as unity, and is used to control
the steepness of the activation function. These activation functions are illustrated in
Fig. 3.1.

All the above functions are monotonically increasing with the domain of output
(−1, 1) or (0, 1). Sigmoidal functions are usually defined as those monotonically
increasing functions satisfying limx→+∞ φ(x) = 1, limx→−∞ φ(x) = 0. Many
functions satisfy this definition if stretched out, and they can be treated as sigmoidal
functions. Many other sigmoidal activation functions are introduced in [13].

A biologically more plausible perceptron is presented in [40] based on the
integrate-and-fire model, with the derived learning rule which enables training of
the neuron on nonlinear tasks. The model encodes the mean interspike interval,
refractory period, and voltage threshold. It is possible to train such a neuron model
by seeking to minimize the output error, and derive a learning rule from the mean
interspike interval of the neuron’s output.

3.2 Single-Layer Perceptron

When more neurons with the hard-limiter activation function are used, we have a
single-layer perceptron, as shown in Fig. 3.2 . The single-layer perceptron can be used
to classify input vector data x into more classes. For a J1-J2 perceptron, the system
state is updated by

net = WT x − θ, (3.6)

ŷ = φ(net), (3.7)

where the net input vector net =
(
net1, . . . , netJ2

)T , the output vector ŷ =
(
ŷ1, . . . , ŷJ2

)T , θ =
(
θ1, . . . , θJm

)T corresponds to all the biases in the second
70 3 Perceptrons

The perceptron learning algorithm is given as

nett, j =
J1∑

i=1

xt,iwi j (t) − θ j = wT
j xt − θ j , (3.9)

ŷt, j =
{

1, nett, j > 0
0, otherwise

, (3.10)

et, j = yt, j − ŷt, j , (3.11)

wi j (t + 1) = wi j (t)+ ηxt,i et, j , (3.12)

for i = 1, . . . , J1, j = 1, . . . , J2, where nett, j is the net input of the j th neuron for
the t th example, w j =

(
w1 j ,w2 j , . . . ,wJ1 j

)T is the vector collecting all weights
terminated at the j th neuron, θ j is the threshold for the j th neuron, xt,i is the i th
input of the t th example, ŷt, j and yt, j are, respectively, the network output and the
desired output of the j th neuron for the t th example, with value 0 or 1 representing
classmembership, and η is the learning rate. All the weights wi j are randomly ini-
tialized. The selection of η does not affect the stability of perceptron learning, and
affects the convergence speed only for nonzero initial weight vector. η is typically
selected as 0.5. The learning process stops when the errors are sufficiently small.

Example 3.1 For a classification problem, the input (2, 2), (−2, 2) are in class 0,
(1,−2), (−1, 1) are in class 1. Select the initial weights and bias as random numbers
between 0 and 1. After training for one epoch, the algorithm converges. The result
is illustrated in Fig. 3.3. In the figure, the learning class boundary is wT x − θ =
0.9294x1 + 0.7757x2 + 0.4868 = 0. Randomly generate 10 points, and the learned
perceptron can correctly classify them. Training can be implemented in adaptive
learning mode.

When used for classification, perceptron learning can operate only for linearly
separable patterns, and does not terminate for linearly inseparable patterns. The fail-
ure of Rosenblatt’s and similar methods to converge for linearly inseparable problems
is caused by the inability of the methods to detect the minimum of the error func-
tion [15].

For a set of nonlinearly separable input patterns, the obtained weights of a per-
ceptron may exhibit a limit cycle behavior. A perceptron exhibiting the limit cycle
behavior is actually a neural network with time periodically varying coefficients. The
minimum number of updates for the weights of the perceptron to reach the limit cycle
depends on the initial weights. The boundedness condition of the perceptron weights
is independent of the initial weights [25]. Also, a necessary and sufficient condition
for the weights of the perceptron exhibiting a limit cycle behavior is derived, and the
range of the number of updates for the weights of the perceptron required to reach
the limit cycle is estimated in [25]. In [26], an invariant set of the weights of the
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and

ot+1,j(x) = � (at+1,j(x)) .

That is, the input to vt+1,j is a weighted sum of the outputs of the neurons in Vt

that are connected to vt+1,j , where weighting is according to w, and the output
of vt+1,j is simply the application of the activation function � on its input.
Layers V1, . . . , VT�1 are often called hidden layers. The top layer, VT , is called

the output layer. In simple prediction problems the output layer contains a single
neuron whose output is the output of the network.
We refer to T as the number of layers in the network (excluding V0), or the

“depth” of the network. The size of the network is |V |. The “width” of the
network is maxt |Vt|. An illustration of a layered feedforward neural network of
depth 2, size 10, and width 5, is given in the following. Note that there is a
neuron in the hidden layer that has no incoming edges. This neuron will output
the constant �(0).
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20.2 Learning Neural Networks

Once we have specified a neural network by (V,E,�, w), we obtain a function
hV,E,�,w : R|V0|�1

! R|VT |. Any set of such functions can serve as a hypothesis
class for learning. Usually, we define a hypothesis class of neural network predic-
tors by fixing the graph (V,E) as well as the activation function � and letting
the hypothesis class be all functions of the form hV,E,�,w for some w : E ! R.
The triplet (V,E,�) is often called the architecture of the network. We denote
the hypothesis class by

HV,E,� = {hV,E,�,w : w is a mapping from E to R}. (20.1)

In the case of the MLP, it includes an input layer (that does not do any processing), 
one output layer and at least one hidden layer. 

Neural Networks: The Multilayer Perceptron 

The MLP generally learns by means of a backpropagation algorithm, which is 
basically a gradient technique. 

The backpropagation algorithm looks for the minimum of the error function in weight space using 
the method of gradient descent. The combination of weights which minimizes the error function is 

considered to be a solution of the learning problem.



Neural Networks

There are many network architectures available now like Feed-forward, Convolutional, 
Recurrent etc

A neural network consists of units (neurons), arranged in layers, which convert an input vector 
into some output. 

Each unit takes an input, applies a (often nonlinear) function to it and then passes the output on to 
the next layer. 

Generally the networks are defined to be feed-forward: a unit feeds its output to all the units on 
the next layer, but there is no feedback to the previous layer. 

Weightings are applied to the signals passing from one unit to another, and it is these weightings 
which are tuned in the training phase to adapt a neural network to the particular problem at hand.
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Fig. 1.5 Architecture of neural networks. a Layered feedforward network. b Recurrent network.
c Two-dimensional lattice network. d Layered feedforward network with lateral connections. e
Cellular network. The big numbered circles stand for neurons and the small ones for input nodes

• In a feedforward network, the connections between neurons are in one direction.
A feedforward network is usually arranged in the form of layers. In such a layered
feedforward network, there is no connection between the neurons in the same layer,
and there is no feedback between layers. In a fully connected layered feedforward
network, every node in any layer is connected to every node in its adjacent forward
layer. The MLP and the RBF network are fully connected layered feedforward
networks.

• In a recurrent network, there exists at least one feedback connection. The Hopfield
model and the Boltzmann machine are two examples of recurrent networks.

• A lattice network consists of one-, two- or higher dimensional array of neurons.
Each array has a corresponding set of input nodes. The Kohonen network [23]
uses a one- or two-dimensional lattice architecture.

• A layered feedforward network with lateral connections has lateral connections
between the units at the same layer of its layered feedforward network architecture.
A competitive learning network has a two-layered network of such an architecture.
The feedforward connections are excitatory, while the lateral connections in the
same layer are inhibitive. Some PCA networks using the Hebbian/anti-Hebbian
learning rules [32] also employ this kind of network topology.

• A cellular network consists of regularly spaced neurons, called cells, which com-
municate only with the neurons in its immediate neighborhood. Adjacent cells are
connected by mutual interconnections. Each cell is excited by its own signals and
by signals flowing from its adjacent cells [5].



Neural Networks: backpropagation algorithm 

Neural networks differ from these simpler supervised procedures in that generally they 
contain multiple hidden layers that make taking the gradient more computationally difficult.

The most successful algorithm for training neural networks is backpropagation, introduced to neural 
networks by Rumelhart et al. in 1985

The basic procedure for training neural is the same as we used for training simpler supervised 
learning algorithms, such as logistic and linear regression: construct a cost/loss function and then use 

gradient descent to minimize the cost function. 



Neural Networks: backpropagation algorithm 

The backpropagation algorithm looks for the minimum of the error function in 
weight space using the method of gradient descent.

The combination of weights which minimizes the error function is considered 
to be a solution of the learning problem.

Since this method requires computation of the gradient of the error function at 
each iteration step, we must guarantee the continuity and differentiability of 

the error function.

One of the more popular activation functions for backpropagation networks is 
the sigmoid, a real function defined by the expression.
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FIG. 38 Model loss of the DNN defined in the main text
to study the MNIST problem as a function of the training
epochs.

visible layers). A brute force calculation is out of the
question since it requires us to calculate as many gradi-
ents as parameters at each step of the gradient descent.
The backpropagation algorithm (Rumelhart and Zipser,
1985) is a clever procedure that exploits the layered struc-
ture of neural networks to more efficiently compute gra-
dients (for a more detailed discussion with Python code
examples see Chapter 2 of (Nielsen, 2015)).

1. Deriving and implementing the backpropagation equations

At its core, backpropagation is simply the ordinary
chain rule for partial differentiation, and can be summa-
rized using four equations. In order see this, we must first
establish some useful notation. We will assume that there
are L layers in our network with l = 1, . . . , L indexing the
layer. Denote by wl

jk the weight for the connection from
the k-th neuron in layer l � 1 to the j-th neuron in layer
l. We denote the bias of this neuron by bl

j . By construc-
tion, in a feed-forward neural network the activation al

j

of the j-th neuron in the l-th layer can be related to the
activities of the neurons in the layer l�1 by the equation

al
j = �

 
X

k

wl
jkal�1

k + bl
j

!
= �(zl

j), (123)

where we have defined the linear weighted sum

zl
j =

X

k

wl
jkal�1

k + bl
j . (124)

By definition, the cost function E depends directly on
the activities of the output layer aL

j . It of course also indi-
rectly depends on all the activities of neurons in lower lay-
ers in the neural network through iteration of Eq. (123).

Let us define the error �L
j of the j-th neuron in the L-th

layer as the change in cost function with respect to the
weighted input zL

j

�L
j =

@E

@zL
j

. (125)

This definition is the first of the four backpropagation
equations.

We can analogously define the error of neuron j in
layer l, �l

j , as the change in the cost function w.r.t. the
weighted input zl

j :

�l
j =

@E

@zl
j

=
@E

@al
j

�0(zl
j), (I)

where �0(x) denotes the derivative of the non-linearity
�(·) with respect to its input evaluated at x. Notice
that the error function �l

j can also be interpreted as the
partial derivative of the cost function with respect to the
bias bl

j , since

�l
j =

@E

@zl
j

=
@E

@bl
j

@bl
j

@zl
j

=
@E

@bl
j

, (II)

where in the last line we have used the fact that
@bl

j/@zl
j = 1. This is the second of the four backprop-

agation equations.
We now derive the final two backpropagation equations

using the chain rule. Since the error depends on neurons
in layer l only through the activation of neurons in the
subsequent layer l +1, we can use the chain rule to write
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This is the third backpropagation equation. The final
equation can be derived by differentiating of the cost
function with respect to the weight wl

jk as

@E

@wl
jk

=
@E

@zl
j

@zl
j

wl
jk

= �l
ja

l�1
k (IV)

Together, Eqs. (I), (II), (III), and (IV) define the four
backpropagation equations relating the gradients of the
activations of various neurons al

j , the weighted inputs
zl
j =

P
k wl

jkal�1
k +bl

j , and the errors �l
j . These equations

can be combined into a simple, computationally efficient
algorithm to calculate the gradient with respect to all
parameters (Nielsen, 2015).
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layer. Denote by wl
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By definition, the cost function E depends directly on
the activities of the output layer aL

j . It of course also indi-
rectly depends on all the activities of neurons in lower lay-
ers in the neural network through iteration of Eq. (123).

Let us define the error �L
j of the j-th neuron in the L-th
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This definition is the first of the four backpropagation
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Together, Eqs. (I), (II), (III), and (IV) define the four
backpropagation equations relating the gradients of the
activations of various neurons al
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j , and the errors �l
j . These equations

can be combined into a simple, computationally efficient
algorithm to calculate the gradient with respect to all
parameters (Nielsen, 2015).
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wjk the weight for the connection from  the k-th neuron in layer l−1 to the j-th neuron in layer l. 

bias of this neuron 

L layers in our network with l = 1,...,L 

in a feed-forward neural network the activation alj of the j-th neuron in the l-th layer can be related to the activities of the neurons in the layer l−1 

error ∆Lj of the j-th neuron in the L-th layer as the change in cost function with respect to the weighted input zjL 

the error of neuron j in layer l, ∆lj, as the change in the cost function 

Notice that the error function ∆lj can also be interpreted as the partial derivative 

of the cost function with respect to the bias blj 

where in the last line 
we have used the fact 

that ∂blj/∂zjl = 1 

Rumelhart et al. in 1985
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Since the error depends on neurons in layer l only through the activation of neurons in the 
subsequent layer l + 1, we can use the chain rule to write 

The final equation can be derived by differentiating of the cost function with respect to the 
weight wjlk as 
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These equations can be combined into a simple, computationally efficient 
algorithm to calculate the gradient with respect to all parameters 
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The Backpropagation Algorithm 
1. Activation at input layer: calculate the activations a1j of all the neurons in the input layer.  

2. Feedforward: starting with the first layer, exploit the feed-forward architecture to compute zl and al for each 
subsequent layer.  

3. Error at top layer: calculate the error of the top layer  

4. “Backpropagate” the error: propagate the error backwards and calculate ∆lj for all layers.  

5. Calculate gradient: calculate  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The Backpropagation Algorithm

1. Activation at input layer: calculate the activa-
tions a1

j of all the neurons in the input layer.

2. Feedforward: starting with the first layer, exploit
the feed-forward architecture through Eq. (123) to
compute zl and al for each subsequent layer.

3. Error at top layer: calculate the error of the top
layer using Eq. (I).

4. “Backpropagate” the error: use Eq. (III) to
propagate the error backwards and calculate �l

j for
all layers.

5. Calculate gradient: use Eqs. (III) and (IV) to
calculate @E

@blj
and @E

@wl
jk

.

We can now see where the name backpropagation
comes from. The algorithm consists of a forward pass
from the bottom layer to the top layer where one calcu-
lates the weighted inputs and activations of all the neu-
rons. One then backpropagates the error starting with
the top layer down to the input layer and uses these errors
to calculate the desired gradients. This description makes
clear the incredible utility and computational efficiency
of the backpropagation algorithm. We can calculate all
the derivatives using a single “forward” and “backward”
pass of the neural network. This computational efficiency
is crucial since we must calculate the gradient with re-
spect to all parameters of the neural net at each step
of gradient descent. These basic ideas also underly al-
most all modern automatic differentiation packages such
as Autograd (Pytorch).

2. Computing gradients in deep networks: what can go wrong

with backprop?

Armed with backpropagation and gradient descent, it
seems like it should be straightforward to train any neural
network. However, until fairly recently it was widely be-
lieved that training deep networks was an extremely dif-
ficult task. One reason for this was that even with back-
propagation, gradient descent on large networks is ex-
tremely computationally expensive. However, the great
advances in computational hardware (and the widespread
use of GPUs) has made this a much less vexing prob-
lem than even a decade ago. It is hard to understate
the impact these advances in computing have had on the
practical utility of neural networks.

On a more technical and mathematical note, another
problem that occurs in deep networks, which transmit
information through many layers, is that gradients can
vanish or explode. This is, appropriately, known as the
problem of vanishing or exploding gradients. This prob-
lem is especially pronounced in neural networks that try

to capture long-range dependencies, such as Recurrent
Neural Networks for sequential data. We can illustrate
this problem by considering a simple network with one
neuron in each layer. We further assume that all weights
are equal, and denote them by w. The behavior of the
backpropagation equations for such a network can be in-
ferred from repeatedly using Eq. (III):

�1
j = �L

j (w)L
L�1Y

j=0

�0(zj). (126)

Let us now also assume that the magnitude �0(zj) is fairly
constant and we can approximate �0(zj) ⇡ �0

0. In this
case, notice that for large L, the error �1

j has very differ-
ent behavior depending on the value of w�0

0. If w�0
0 > 1,

the errors and the gradient blow up. On the other hand,
if w�0

0 < 1 the errors and gradients vanish. Only when
the weights satisfy w�0

0 ⇡ 1 and the neurons are not
saturated will the gradient stay well behaved for deep
networks.

This basic behavior holds true even in more compli-
cated networks. Rather than considering a single weight,
we can ask about the eigenvalues (or singular values) of
the weight matrices wl

jk. In order for the gradients to
be finite for deep networks, we need these eigenvalues to
stay near unity even after many gradient descent steps.
In modern feedforward and ReLU neural networks, this
is achieved by initializing the weights for the gradient de-
scent in clever ways and using non-linearities that do not
saturate, such as ReLUs (recall that for saturating func-
tions, �0 ! 0, which will cause the gradient to vanish).
Proper initialization and regularization schemes such as
gradient clipping (cutting-off gradients with very large
values), and batch normalization also help mitigate the
vanishing and exploding gradient problem.

E. Regularizing neural networks and other practical
considerations

DNNs, like all supervised learning algorithms, must
navigate the bias-variance tradeoff. Regularization tech-
niques play an important role in ensuring that DNNs
generalize well to new data. The last five years have seen
a wealth of new specialized regularization techniques for
DNNs beyond the simple L1 and L2 penalties discussed in
the context of linear and logistic regression, see Secs. VI
and VII. These new techniques include Dropout and
Batch Normalization. In addition to these specialized
regularization techniques, large DNNs seem especially
well-suited to implicit regularization that already takes
place in the Stochastic Gradient Descent (SGD) (Wilson
et al., 2017), cf. Sec. IV. The implicit stochasticity and
local-nature of SGD often prevents overfitting of spurious
correlations in the training data, especially when com-
bined with techniques such as early stopping. In this
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The above network contains the following:
• two inputs
• two hidden neurons
• two output neurons
• two biases

Below are the steps involved in Backpropagation:
• Step – 1: Forward Propagation
• Step – 2: Backward Propagation 
• Step  –  3:  Putting  all  the  values  together  and 

calculating the updated weight value

Step – 1: Forward Propagation 
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Step – 3: Putting all the values together and calculating the updated weight value
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Step – 3: Putting all the values together and calculating the updated weight value
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Recurrent Neural Network (RNN)

A usual RNN has a short-term memory
Recurrent Neural Networks add the immediate past to the present.



Recurrent Neural Network (RNN)

To understand and visualize the back propagation, let’s unroll the network at all the time steps.
In case of a backward propagation in this case, we are figuratively going back in time to change the 
weights, hence we call it the Back propagation through time(BPTT)



Recurrent Neural Network (RNN)

The Backpropagation Through Time (BPTT) algorithm is an algorithm that performs an exact 
computation of the gradient of the error measure for use in the weight adaptation.
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gradient algorithm gets stuck in a local minimum and switching back to a gradient mode again
after some time.

3.3  Backpropagation Through Time (BPTT) algorithm for FRNN

The Backpropagation Through Time (BPTT) algorithm is an algorithm that performs an exact
computation of the gradient of the error measure for use in the weight adaptation. In this section
the BPTT algorithm will be derived for a (type 1) FRNN using a Sum Squared Error measure.
!"#$%&'(%)(&"*+,-#+%.(%)(#$"(-/0%*+#$1
There are two different methods to develop the BPTT algorithm. Both are shown in this report:

- derivation by unfolding the network in time, which also gives intuitive insight in how the
algorithm works.

- a formal derivation of the algorithm using the ordered derivative notation.

The ‘unfolding in time’ approach will be explained first in subsection 3.3.1 because the
unfolding procedure gives a better understanding of how the algorithm works. This approach is
only briefly introduced in this subsection and the rest of the derivation can be found in appendix
B.1. The second approach will be given in subsection 3.3.3, after the ordered derivative notation
has been introduced (in subsection 3.3.2).
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As an error measure to be minimized, the Sum Squared Error for a sequence (subsection 3.1.1)
denoted E(n0,n) is used:

!!" mennE )(),( (3.6)

The error measure is calculated for one example sequence that runs in the time interval [n0,n].
Time n can be the current time (in this case, future values of ei(m), m > n, are still unknown) or
the end time of the example sequence (in this case, n=n1).

Using equation 3.5a the error measure may be minimized by gradient descent:
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Before this can be further developed, the network equations are first given and the network has
to be unfolded in time. The network dynamics of equations 3.8 are used to describe the FRNN.
The matrix notation is not used because the algorithm will be developed in scalar notation. The
equations are repeated here for convenience.
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Note that initial values yi(n0-1) have to be known to be able to compute the initial extended
input vector >(n0) = {zi(n0)}. The example FRNN of subsection 2.2.2 is repeated in figure 3.1 for
convenience.

The error measure may be minimized by gradient descent: 
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Note that initial values yi(n0-1) have to be known to be able to compute the initial extended
input vector >(n0) = {zi(n0)}. The example FRNN of subsection 2.2.2 is repeated in figure 3.1 for
convenience.
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Figure 3.1; Example FRNN with four neurons and two external inputs

In this approach, the recurrent network is unfolded in time into an equivalent static
feedforward network. For a certain initial time n0 and current time n, the Fully Recurrent
(single-layer) network NR with N neurons is unfolded into a feedforward network NR* which
has a layer of N neurons for every time step in the interval [n0,n]. So each neuron in NR has a
copy in each layer of NR* and each weight wij in NR that connects unit j to unit i through a
delay, has a copy wij(m) in NR* that connects unit j in layer (m-1) to unit i in the next layer m.
Each input weight wij (with 1 ! i ! N and N+1 ! j ! N+M ) that connects input u(j-N)(.) to neuron
i has a copy wij(m) that connects input u(j-N)(m) to neuron i in layer m.

As an example of unfolding, the unfolded equivalent of the example FRNN of figure 3.1 is
presented for four time-steps (in the interval [n0,n] =[0,3] ) in figure 3.2. The labels for the sets
of duplicated weights wij(m) are shown on the left.

The unfolding of the network solves the problem of unknown target values for the hidden
neurons N3 and N4 because at time n=3, the only known error terms e1(3) and e2(3) can be
backpropagated through neurons N1 and N2 in layer 3 to neurons N3 and N4 in layer 2 with the
backpropagation algorithm described in this section.

The network dynamics of the unfolded FRNN are now given by the equations:
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The synchronization of the output was achieved by requiring that all computing 
elements evaluate their inputs and compute their output simultaneously.

Synchronous and asynchronous networks

A relevant issue for the correct design of recurrent neural networks is the adequate 
synchronization of the computing elements. 

In the case of McCulloch-Pitts networks we solved this difficulty by assuming that 
the activation of each computing element consumes a unit of time.



Asynchronous networks 

In an asynchronous network each unit computes its excitation at random times and 
changes its state to 1 or −1 independently of the others and according to the sign of 

its total excitation.

There will not be any delay between computation of the excitation and state update

Asynchronous networks are of course more realistic models of biological 
networks, although the assump- tion of zero delay in the computation and 

transmission of signals lacks any biological basis.



The Hopfield Model

No synchronization is required, each unit behaving as a kind of elementary system in complex 
interaction with the rest of the ensemble

In 1982 the American physicist John Hopfield proposed an asynchronous neural network model 
which made an immediate impact in the AI community

In the Hopfield model it is assumed that the individual units preserve their individual states until 
they are selected for a new update. The selection is made randomly.

A Hopfield network consists of n totally 
coupled units, that is, each unit is connected 

to all other units except itself. 

The network is symmetric
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unit j is equal to the weight wji of the connection from unit j to unit i. This
can be interpreted as meaning that there is a single bidirectional connection
between both units. The absence of a connection from each unit to itself avoids
a permanent feedback of its own state value [198].

Figure 13.2 shows an example of a network with three units. Each one of
them can assume the state 1 or −1. A Hopfield network can also be interpreted
as an asynchronous BAM in which the left and right layers of units have fused
to a single layer. The connections in a Hopfield network with n units can be
represented using an n× n weight matrix W = {wij} with a zero diagonal.

unit 3unit 2

unit 1

x3

x1

x2

w12 w13

w23

Fig. 13.2. A Hopfield network of three units

It is easy to show that if the weight matrix does not contain a zero diagonal,
the network dynamics does not necessarily lead to stable states. The weight
matrix

W =

⎛

⎝
−1 0 0

0 −1 0
0 0 −1

⎞

⎠ ,

for example, transforms the state vector (1, 1, 1) into the state vector
(−1,−1,−1) and conversely. In the case of asynchronous updating, the net-
work chooses randomly among the eight possible network states.

A connection matrix with a zero diagonal can also lead to oscillations in
the case where the weight matrix is not symmetric. The weight matrix

W =
(

0 −1
1 0

)

describes the network of Figure 13.3. It transforms the state vector (1,−1)
into the state vector (1, 1) when the network is running asynchronously. After
this transition the state (−1, 1) can be updated to (−1,−1) and finally to
(1,−1). The state vector changes cyclically and does not converge to a stable
state.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996
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The units of a Hopfield network can be assigned a threshold θ different from zero. In this case each 
unit selected for a state update adopts the state 1 if its total excitation is greater than θ, otherwise 
the state −1. This is the activation rule for perceptrons, so that we can think of Hopfield networks 
as asynchronous recurrent networks of perceptrons. 
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1

–1

x1 x2

Fig. 13.3. Network with asymmetric connections

The symmetry of the weight matrix and a zero diagonal are thus necessary
conditions for the convergence of an asynchronous totally connected network
to a stable state. These conditions are also sufficient, as we show later.

The units of a Hopfield network can be assigned a threshold θ different
from zero. In this case each unit selected for a state update adopts the state
1 if its total excitation is greater than θ, otherwise the state −1. This is the
activation rule for perceptrons, so that we can think of Hopfield networks as
asynchronous recurrent networks of perceptrons.

The energy function of a Hopfield network composed of units with thresh-
olds different from zero can be defined in a similar way as for the BAM. In
this case the vector y of equation (13.5) is x and we let θ = θℓ = θr.

Definition 17. Let W denote the weight matrix of a Hopfield network of n
units and let θ be the n-dimensional row vector of units’ thresholds. The energy
E(x) of a state x of the network is given by

E(x) = −1
2
xWxT + θxT.

The energy function can also be written in the form

E(x) = −1
2

n∑

j=1

n∑

i=1

wijxixj +
n∑

i=1

θixi.

The factor 1/2 is used because the identical terms wijxixj and wjixjxi are
present in the double sum.

The energy function of a Hopfield network is a quadratic form. A Hop-
field network always finds a local minimum of the energy function. It is thus
interesting to look at an example of the shape of such an energy function. Fig-
ure 13.4 shows a network of just two units with threshold zero. It is obvious
that the only stable states are (1,−1) and (−1, 1). In any other state, one of
the units forces the other to change its state to stabilize the network. Such
a network is a flip-flop, a logic component with two outputs which assume
complementary logic values.

The energy function of a flip-flop with weights w12 = w21 = −1 and two
units with threshold zero is given by

E(x1, x2) = x1x2,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996
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In order to characterize the performance of the network, the concept of 
energy is introduced and the following energy function defined



Hopfield network consists  of  a  set  of  interconnected neurons which update their  activa-  tion values 
asynchronously. The activation values are binary, usually {-1,1}. The update of a unit depends on the 
other units of the network and on itself. A unit i will be influence by an other unit j with a certain weight 
wij, and have a threshold value

Hopfield Network Elements

2 Hopfield Network Elements

Hopfield network consists of a set of interconnected neurons which update their activa-

tion values asynchronously. The activation values are binary, usually {-1,1}. The update of
a unit depends on the other units of the network and on itself. A unit i will be influence

by an other unit j with a certain weight wij , and have a threshold value.

So there is a constraint due to the other neurons and due the specific threshold of the

unit.

Update and parameters

The new activation value (state) of a neuron is compute, in discret time, by the function :

xi(t+ 1) = sign(
nX

j=1

xj(t)wij � ✓i) (1)

or

X = sign(XW � T )

where X, W, T and the sign function are :

– X is the activation value of the n units/neurons : X =
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where wij can be interpreted

as the influence of neuron i over neuron j (and reciprocally)

– T is the threshold of each unit : T =

0
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– the sign function is define as :

(
+1 if x � 0

�1 otherwise

We can easily represent an Hopfield Network by a weighted undirected graph were :

– each unit is a vertex

– the weighted edge between each vertex is the weight, W is then useful as an adjacent
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2 Hopfield Network Elements

Hopfield network consists of a set of interconnected neurons which update their activa-

tion values asynchronously. The activation values are binary, usually {-1,1}. The update of
a unit depends on the other units of the network and on itself. A unit i will be influence

by an other unit j with a certain weight wij , and have a threshold value.

So there is a constraint due to the other neurons and due the specific threshold of the

unit.

Update and parameters
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neural clusters from their activity patterns.496

5 Methods497

5.1 Backpropagation and Gradient Descent498

Backpropagation is a particular class of cost function minimization methods499

based on gradient descent. Given a series of observed transitions (s(t �500

1), s(t)) with 0 < t  m, the learning network learns to predict s(t) given501

s(t � 1) changing the values of its connectivity matrix J̄. The learning502

network neuron i prediction s̄i(t) is given by (2) which is a function with503

value determined by s(t� 1) and J̄.504

In the recurrent perceptron neural network, we consider the mean square505

error cost function (3) to evaluate how well the recurrent perceptron neural506

network reproduces the role-model observed behavior, and to evaluate the507

learning process in backpropagation. Notice, that when E(s(t), s̄(t)) = 0,508

the predictions of si(t) are always correct, because s̄i(t) = si(t) for all values509

of t and i.510

Given an initial value of J̄ and the associated prediction s̄i(t), backprop-511

agation implemented with gradient descent gradually descends the slope512

defined by the multivariate function E(s(t), s̄(t)) = E(J̄). If it is applied513

iteratively it eventually finds a local minimum. Thus, at each step the re-514

current perceptron neural network adjusts J̄ij accordingly515

J̄ 0
ij = J̄ij + ↵

dE

dJ̄ij
(9)

where ↵ is the learning rate of the gradient descent method. Unfortunately,516

the recurrent neural network dynamics (1) is singular, and the derivatives517

are not defined everywhere. Nevertheless, we can forcefully linearize the518

model and derive a pseudo-derivative for the gradient function, as also done519

in [39].520

5.2 How to Derive the Gradient521

Given the discrete-time recurrent neural network model, the neuron i input522

activity strength is523

 i(t) =
nX

j=1

J̄ijsj(t� 1). (10)

Since ✓(x) is not derivable in 0, we make the rough approximation that524

✓(x) ⇡ x, and get the cost function gradient estimate:525

dE

dJ̄ij
= �

m+1X

t=1

[si(t)� s̄i(t)] sj(t� 1). (11)
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Learning in biologically relevant neural-network models usually relies on Hebb learning rules. 
The typical implementations of these rules change the synaptic strength on the basis of the co-
occurrence of  the neural  events  taking place at  a  certain time in the pre-  and post-synaptic 
neurons.

The Hebbian rule was the first learning rule. In 1949 Donald Hebb developed it as learning 
algorithm of the unsupervised neural network. We can use it to identify how to improve the 
weights of nodes of a network.

The Hebb learning rule assumes that – If two neighbor neurons activated and deactivated at the 
same time. Then the weight connecting these neurons should increase.

For neurons operating in the opposite phase, the weight between them should decrease. If there is 
no signal correlation, the weight should not change.

Hebb Learning

The Hebbian learning rule describes the formula as follows:



Delta Learning Rule

Developed by Widrow and Hoff, the delta rule, is one of the most common learning rules.
It depends on supervised learning.

This rule states that the modification in sympatric weight of a node is equal to the multiplication 
of error and the input.

In Mathematical form the delta rule is as follows:

We can use the delta learning rule with both single output unit and several output units.

While applying the delta rule assume that the error can be directly measured.

The aim of applying the delta rule is to reduce the difference between the actual and expected 
output that is the error.



Correlation Learning Rule

The  correlation  learning  rule  based  on  a  similar  principle  as  the  Hebbian  learning  rule.  It 
assumes that weights between responding neurons should be more positive, and weights between 
neurons with opposite reaction should be more negative.

In Mathematical form the correlation learning rule is as follows:

where dj is the desired value of output signal. This training algorithm usually starts with the 
initialization of weights to zero.

Since  assigning  the  desired  weight  by  users,  the  correlation  learning  rule  is  an  example  of 
supervised learning



Learning Rule

In conclusion to the learning rules in Neural Network, we can say that 
most promising feature of the Artificial Neural Network is its ability to 

learn. The learning process of brain alters its neural structure. The 
increasing or decreasing the strength of its synaptic connections 

depending on their activity.



Deep Learning?



Deep Learning: Falling hardware prices and the development of 
GPUs for personal use in the last few years have contributed to the 
development of the concept of Deep learning which consists of 
multiple hidden layers in an artificial neural network.  

This approach tries to model the way the human brain processes light 
and sound into vision and hearing. Some successful applications of 
deep learning are computer vision and speech recognition.

Deep Learning?



Convolutional Neural Network (CNN)

CNNs  are  the  backbone  of 
many  modern  deep  learning 
applications  and  here  we  just 
give a high-level overview of 
CNNs  that  should  allow  the 
reader  to  delve  directly  into 
the specialized literature.

Convolut ional  Neural 
Networks  (ConvNets  or 
CNNs)  are  a  category  of 
Neural  Networks  that  have 
proven very effective  in areas 
such as image recognition and 
classification. 

Later, in 1998, Convolutional Neural Networks were introduced in a paper by 
Bengio, Le Cun, Bottou and Haffner. Their first Convolutional Neural Network 
was called LeNet-5 and was able to classify digits from hand-written numbers

https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/


Convolutional Neural Network (CNN)

We perform a series convolution + pooling operations, followed by a number of 
fully connected layers. If we are performing multiclass classification the output 
is softmax. We will now dive into each component.
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FIG. 42 Architecture of a Convolutional Neural Network (CNN). The neurons in a CNN are arranged in three
dimensions: height (H), width (W ), and depth (D). For the input layer, the depth corresponds to the number of channels (in
this case 3 for RGB images). Neurons in the convolutional layers calculate the convolution of the image with a local spatial
filter (e.g. 3⇥ 3 pixel grid, times 3 channels for first layer) at a given location in the spatial (W,H)-plane. The depth D of the
convolutional layer corresponds to the number of filters used in the convolutional layer. Neurons at the same depth correspond
to the same filter. Neurons in the convolutional layer mix inputs at different depths but preserve the spatial location. Pooling
layers perform a spatial coarse graining (pooling step) at each depth to give a smaller height and width while preserving the
depth. The convolutional and pooling layers are followed by a fully connected layer and classifier (not shown).

ing operation is the max pool. In a max pool, the spatial
dimensions are coarse-grained by replacing a small region
(say 2⇥2 neurons) by a single neuron whose output is the
maximum value of the output in the region. In physics,
this pooling step is very similar to the decimation step
of RG (Iso et al., 2018; Koch-Janusz and Ringel, 2017;
Lin et al., 2017; Mehta and Schwab, 2014). This gener-
ally reduces the dimension of outputs. For example, if
the region we pool over is 2 ⇥ 2, then both the height
and the width of the output layer will be halved. Gen-
erally, pooling operations do not reduce the depth of the
convolutional layers because pooling is performed sepa-
rately at each depth. A simple example of a max-pooling
operation is shown in Fig. 44. There are some studies
suggesting that pooling might be unnecessary (Springen-
berg et al., 2014), but pooling layers remain a staple of
most CNNs.

In a CNN, the convolution and max-pool layers are
generally followed by an all-to-all connected layer and a
high-level classifier such as a soft-max. This allows us
to train CNNs as usual using the backprop algorithm,
cf. Sec. IX.D. From a backprop perspective, CNNs are
almost identical to fully connected neural network archi-
tectures except with tied parameters.

Apart from introducing additional structure, such as
translational invariance and locality, this convolutional
structure also has important practical and computational
benefits. All neurons at a given layer represent the same
filter, and hence can all be described by a single set of
weights and biases. This reduces the number of free pa-
rameters by a factor of H⇥W at each layer. For example,
for a layer with D = 102 and H = W = 102, this gives
a reduction in parameters of nearly 106! This allows for
the training of much larger models than would otherwise
be possible with fully connected layers. We are familiar

with similar phenomena in physics: e.g. in translation-
ally invariant systems we can parametrize all eigenmodes
by specifying only their momentum (wave number) and
functional form (sin, cos, etc.), while without translation
invariance much more information is required.

B. Example: CNNs for the 2D Ising model

The inclusion of spatial structure in CNNs is an impor-
tant feature that can be exploited when designing neural
networks for studying physical systems. In the accompa-
nying notebook, we used Pytorch to implement a simple
CNN composed of a single convolutional layer followed by
a soft-max layer. We varied the depth of the CNN layer
from unity – a single set of weights and one bias – to a
depth of 50 distinct weights and biases. The CNN was
then trained using SGD for five epochs using a training
set consisting of samples from far in the paramagnetic
and ordered phases. The results are shown in Fig. 45.
The CNN achieved a 100% accuracy on the test set for
all architectures, even for a CNN with depth one. We also
checked the performance of the CNN on samples drawn
from the near-critical region for temperatures T slightly
above and below the critical temperature Tc. The CNN
performed admirably even on these critical samples with
an accuracy of between 80% and 90%. As is the case
with all ML and neural networks, the performance on
parts of the data that are missing from the training set
is considerably worse than on test data that is similar
to the training data. This highlights the importance of
properly constructing an accurate training dataset and
the considerable obstacles of generalizing to novel situ-
ations. We encourage the interested reader to explore
the corresponding notebook and design better CNN ar-

Convolution is a mathematical operation to merge two sets of information. In our case the 
convolution is applied on the input data using a convolution filter to produce a feature map



Convolutional Neural Network (CNN)

On the  left  side  is  the  input  to  the  convolution 
layer, for example the input image. On the right is 
the convolution filter,  also called the kernel,  we 
will use these terms interchangeably. This is called 
a 3x3 convolution due to the shape of the filter. We 
perform the convolution operation by sliding this 
filter over the input

This was an example convolution operation shown in 2D using a 3x3 filter



Convolutional Neural Network (CNN)

We  perfom  numerous 
convolutions  on  our  input, 
where each operation uses a 
different  filter.  This  results 
in different feature maps. In 
the end, we take all of these 
feature  maps and put  them 
together as  the final  output 
of the convolution layer.

Just like any other Neural Network, we use an activation function to make our output non-linear.

After  a  convolution layer,  it  is  common to add a pooling layer  in between CNN layers.  The 
function  of  pooling  is  to  continuously  reduce  the  dimensionality  to  reduce  the  number  of 
parameters and computation in the network
The most frequent type of pooling is max pooling, which takes the maximum value in each window
After the convolution and pooling layers, our classification part consists of a few fully connected 
layers



Convolutional Neural Network (CNN)

Let’s say we have a 32x32x3 image and we use a filter of size 5x5x3

The convolution operation for each filter is performed independently and the resulting feature maps 
are disjoint.

For any kind of neural network to be powerful, it needs to contain non-linearity

The 3D convolution figures we saw above used padding, that’s why the height and width of the 
feature map was the same as the input (both 32x32), and only the depth changed.



Convolutional Neural Network (CNN)

The gray area around the input is the padding. We 
either  pad  with  zeros  or  the  values  on  the  edge. 
Now the dimensionality of the feature map matches 
the  input.  Padding is  commonly used in  CNN to 
preserve  the  size  of  the  feature  maps,  otherwise 
they  would  shrink  at  each  layer,  which  is  not 
desirable



Convolutional Neural Network (CNN)

After  a  convolution  operation  we  usually  perform  pooling  to  reduce  the 
dimensionality

The most common type of pooling is max pooling which just takes the max value 
in the pooling window. Contrary to the convolution operation, pooling has no 
parameters



Convolutional Neural Network (CNN)

Fully Connected
After the convolution + pooling layers we add a couple of fully connected layers



Convolutional Neural Network (CNN)



the end


