

Immersed Boundary Method and Investigation of Some Fundamental Questions Regarding the "Design" of the Heart

Rajat Mittal, Jung Hee Seo, Vijay Vedula, Kourosh Shoele, Haibo Dong, Xudong Zheng, Qian Xue **Mechanical Engineering**

Theodore Abraham, Albert Lardo and Richard T. George Cardiology

Flow Physics & Computation Lab engineering.jhu.edu/fsag

Multi-Capability Tool Required

ViCar3D

Viscous Cartesian Grid Solver for 3D Immersed Boundaries

- Simulations on non-conforming Cartesian Grids
 - Stationary/moving boundaries
 - Solids/membranes
- Sharp Interface IBM method
 - No boundary forcing (Peskin et al)
 - 3D ghost-cell methodology
- 2nd Order Fractional Step Scheme
- 2nd Order non-dissipative central difference scheme
 - IBM treatment also 2nd order accurate
- Global Dynamic Coeff SGS Model (Vreman)

Immersed Boundary Methods Mittal & Iaccarino, Ann. Rev Fluid Mech. 2005

> JOHNS HOPKINS U n i v e r s i t y

ViCar3D: Improved Conservation

- For finite-difference based IBM, boundary motion leads to violation of geometric conservation law
 - Loss of strict local mass conservation
 - Spurious pressure oscillations
 - Bad for FSI and sound prediction
- Have devised a method that ensures "regional" mass conservation
 - Finite-difference for momentum
 - Finite-volume for mass

JOHNS HOPKINS U n i v e r s i t y

ViCar3D: Performance

- Pressure Poisson
 - > 80% of CPU time
 - Geometric multigrid
 - Semi-coarsening + LSOR
 - Approx. reconstruction of IB on coarse levels.

Experimental Validation: Simplified LV

Velocity Profiles Comparison

Re: 3475 Wo: 9.7 SV: 60 ml EF: 40%

Diagnosis: Virtual Doppler Ultrasound

Parabolic transducer Size: 2 cm, pulsed wave $f_0 = 2 \text{ MHz}, T_p = 1 \mu \text{sec}$

Virtual Doppler Echocardiography

Multi-Modality Segmentation & Registration

Patient: SV=84 mL, EF=47% Apical Aneurysm Apical Akinesia

Segmented/Reconstructed Model

el Reconstructed LV Flow Profile

Patient-Specific Left Heart Model

Vedula et al., *J Biomech Eng.* 2015; 137(11), 111003, doi: 10.1115/1.4031487

Now to some fundamental questions....

Significance of Ventrical Flow Patterns?

Kilner et al, Nature letter, 2000

Bolger et al., JCMR, 2007

Effect of hemodynamics on the ventricular function ?

- Intraventricualr flow *"efficiently* redirects" blood stream to the aorta.
- No clear, quantitative evidence

1. "Mechanical Efficiency" of the ventricle

- Reduction of the work required to eject blood flow
- Minimize the energy loss (energy dissipation)

2. Blood Transport and Mixing

- Mixing of freshly oxygenated and residual bloods
- Blood residence time in the ventricle

\Rightarrow Quantitative analysis using CFD

Simplified Left Ventricle (LV) Model

3D model constructed from the contrast CTscan data*

Simplified model for the computational analysis

* CT-scan data provided by Dr. Albert C. Lardo, JHU

Computational Methods

- LV motion is prescribed on the surface mesh
- Incompressible Navier-Stokes equations with the immersed boundary method
- Coupled with LEM to model pre/after loads

E/A ratio, Geometric Variations

 E/A ratio and geometric variations are considered for different intravnetricular blood flow patterns

UNIVERSITY

E/A ratio	Geometry		
1.2	Normal		
0.5	Normal		
2	Normal		
2	Aligned		
	E/A ratio 1.2 0.5 2 2		

Vortical Structure (Case A)

Vortical Structure (Case B)

400 200 200 0 **[]]** 0 200 Normal, E/A=0.5 200 (256x256x384) A-wave Ejection E-wave -400 0.2 0.4 0.6 0.8 0 t [sec] t=0.2 s 0.3 s 0.4 s 0.5 s 0.6 s 0.8 s

Vortical Structure (Case C)

Vortical Structure (Case D)

Redirection of Kinetic Energy

Flow Pattern and Kinetic Energy at Early Systole

Pumping Efficiency

Total Energy output

Work done by heart muscle

 $\eta = \frac{\int \dot{E}_{out} dt}{\int \dot{W}_{e} dt} \quad \text{Overall pumping efficiency}$

	Work [mJ]	E _{out} [mJ]	η
E/A=1.2	688	674	0.980
E/A=0.5	687	672	0.978
E/A=2	688	674	0.980
Aligned, E/A=2	687	673	0.980

Negligible Differences

Reason:

(Energy required to overcome peripheral resistance) >> (Kinetic energy of blood flow at end diastole)

Blood Transport and Mixing

Red Blood Cell Motion:

Lagrangian particle tracking

$$\vec{x}_p(t+\Delta t) = \vec{x}_p(t) + \int_t^{t+\Delta t} \vec{U}(\vec{x}_p) dt$$

(freshly oxygenated) Atrial blood cells

Ventricular blood cells of previous cycles

Blood Cell Motions

Red Blood Cell Motion:

Lagrangian particle tracking

UNIVERSITY

Blood Transport and Washout

Washout: Fraction of Ejected Ventricular Blood Volume =(Delayed Ejection) /(Total ventricular blood volume)

Remaining Fraction of original Ventricular Blood Volume after *n* cycles

 $=(1-Washout)^n$

Perfect mixing: Washout = EF

Lower Washout: longer blood residence time

Blood Transport Metrics

Average for 4 cycles

EF=53%	М	Washout	n _{1%}
E/A=1.2	0.82	0.584	5.25
E/A=0.5	0.78	0.681	4.03
E/A=2	0.87	0.523	6.22
E/A=2, Aligned	0.88	0.489	6.86

Mixing quality, **M** 0: not mixed 1: perfect mixing

 $n_{1\%}$: Time (cardiac cycle) required to reduce initial ventricular blood to 1%

- Up to ~25% differences in *Washout* due to the different flow patterns
- Lower *Washout* causes longer residence time of RBC in the ventricle: more conducive to *clot formation (thrombogenesis)*

Conclusion – Flow patterns primarily thrombo-protective! Effect on efficiency is very small.

Effect of Trabeculae and Papillary Muscles on LV Hemodynamics

- Why is the LV trabeculated?
- Does this not compromise the hydrodynamic of the LV?
- Does it not create locations for thrombogenesis?
- How significant is the effect?
- Can we ignore the trabeculae in computational models?

Computational Model

UNIVERSITY

Computational Model

Flow Waveform Model

E/A Ratio	1.5		
Stroke Volume (SV)	76 ml		
Ejection Fraction	0.61		
Heart Rate (HR)	67 bpm		
Reynolds No. (Re)	5630		
Womersley No. (Wo)	15.7		

Relevant Parameters

Duration of various phases

AT	DT	Diastasis	A-wave	IVC	Systole	IVR	Total
90	160	130	140	30	320	30	900

Kovacs et al., *Am. J. Physiol. Heart Circ. Physiol.*, 1987 (252) McGuire et al., *Am. J. Physiol. Heart Circ. Physiol.*, 1997(272) Chung et al., *Am. J. Physiol. Heart Circ. Physiol.*, 2004 (287) Nagueh et al., *J. Am. Soc. Echocardio.*, 2009 (22) Seo & Mittal, *Phys. Fluids*, 2013 (25) Vedula et al., *Theo. Comput. Fluid Dyn. (SI)*, 2015 (submitted)

CFD-Ready Model

UNIVERSITY

3D Vortex Structures

Trabeculated Model

- 3D vortex structures, λ_{ci}
 criterion[†]
- Cartesian grid size:
 - 256x256x512 (≈33 million)
- 512 processors on XSEDE Stampede high performance cluster
- 1 days per cardiac cycle

ERSI

3D Vortex Structures

Trabeculated LV

JOHNS HOPKINS

Kinetic Energy and Dissipation

JOHNS HOPKINS UNIVERSITY

В

"Virtual" Ventriculography

Summary

- No measureable impact on hydrodynamic efficiency
 - Significant increase in viscous dissipation (55%)
 - Negligible compared to systolic pressure work (6mJ vs. 0.8 J)
- Deeper penetration of inflow jet and energized apical region
 - Despite only 10% blockage due to PMs
 - Additional blockage due to multiple boundary layers and recirculating flow
- Trabeculae is at least as effective as smooth wall in minimizing apical flow residence time. But, arguably, trabeculae might marginally reduce the risk of thrombogenesis
 - Similar mean and RMS profiles
 - Slightly lower end-systolic RMS value for TLV
 - Higher apical flow energy

Note: Model missing realistic squeezing of the trabeculae.

Might further increase benefit o trabeculae.

JOHNS HOPKINS 1 n i v e r s i t y

Cited Papers - Immersed Boundary Method

- Mittal, R., laccarino, G. "Immersed Boundary Methods," Annual Review of Fluid Mech., 2005. 37:239-61.
- R.Mittal, H.Dong, M.Bozkurttas, F.M.Najjar, A.Vargas, A.von Loebbecke, "A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries", Journal of Computational Physics, Vol.227, Issue 10, May 2008.
- J. H. Seo and R. Mittal, "A sharp interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations", Journal of Computational Physics, 2011, Vol. 230, Issue 19, pp. 7347-7363.
- R. Bhardwaj and R. Mittal, "Benchmarking a coupled Immersed-Boundary-Finite-Element Solver for large scale flow-induced deformation", AIAA Journal, Vol. 50 (7), pp: 1638-42, 2011.
- J. Seo and R. Mittal, "Computation of Aerodynamic Sound around Complex Stationary and Moving Bodies", 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January 4-7 2011.
- J. H. Seo and R. Mittal, "A Higher-Order Immersed Boundary Method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries", Journal of Computational Physics, 2011, Vol. 230, Issue 4, pp. 1000-1019.
- X. Zheng, Q, Xue, R. Mittal and S. Beilamowicz, "A Coupled Sharp-Interface Immerse Boundary-Finite Element Method for Flow-Structure Interaction with Application to Human Phonation", Journal of Biomechanical Engineering, 2010, Vol. 132, 111003 (1-12).
- X. Zheng, J. H. Seo, V. Vedula, T. Abraham and R. Mittal, "Computational Modeling and Analysis of Intracardiac Flows in Simple Models of the Left Ventricle", European Journal of Mechanics- B/Fluids, Vol. 35, pp: 31-39, 2012.
- Jung Hee Seo, Vijay Vedula, Theodore Abraham, and Rajat Mittal, "Multiphysics computational models for cardiac flow and virtual cardiography", Int. J. Num. Meth. Biomed. Eng., doi: 10.1002/cnm.2556, 2013.680,

Cited Papers – Fundamental Questions

- Vijay Vedula, Jung-Hee Seo, Albert C. Lardo and Rajat Mittal, "Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle", Theoretical and Computational Fluid Dynamics, doi: 10.1007/s00162-015-0349-6, 2015.
- Vijay Vedula, Richard George, Laurent Younes, and Rajat Mittal, "Hemodynamics in the left atrium and its effect on ventricular flow patterns", J Biomech Eng. 2015; 137(11), 111003, doi: 10.1115/1.4031487.
- Jung-Hee Seo, Vijay Vedula, Theodore Abraham, Albert C. Lardo, Fady Dawoud, Hongchang Luo and Rajat Mittal, "Effect of the mitral valve on diastolic flow patterns", Phys. Fluids, Vol. 26, pp:121901-14, doi: 10.1063/1.4904094, 2014
- Vijay Vedula, Stefania Fortini, Jung-Hee Seo, Giorgio Querzoli, and Rajat Mittal, "Computational modeling and validation of intraventricular flow in a simple model of left ventricle", Theo. and Comput. Fluid Dyn., doi: 10.1007/s00162-014-0335-4.
- J. H. Seo, and R. Mittal, "Effect of diastolic flow patterns on the function of the left ventricle", Phys. Fluids, Vol. 25, pp: 110801-21, doi: 10.1063/1.4819067, 2013.