

Flow Effects on Thrombogenesis: Insights from Computational Models

Rajat Mittal & Jung Hee Seo Mechanical Engineering

Thura Abd & Richard George Division of Cardiology

Flow Physics & Computation Lab engineering.jhu.edu/fsag

Formation of Blood Clots in the Heart

- Clot (thrombus) formation → flow statis
- Normal ventricles
 - Ejection fraction ~55%
 - Avoids flow statis (How???)
- Conditions associated with cardiac thrombus formation
 - Myocardial infarction (MI)
 - Heart failure
 - Arrhythmias
 - Cardiomyopathies
 - .
- Clinical significance
 - Thomboembolic risk

Post MI Thrombus Formation

- Patients recovering from MI are generally at higher risk of LVT formation
 - 720K MIs/yr in the US
 - Thrombus located in apical region
- Reduced ejection fraction (<40%)
- Apical Akinesia/Dyskinesia
- Ventricle remodeling
- Hypercoagulable endothelium Tissue factor pathway

LVT Risk Stratification & Therapy

- Risk criteria
 - Antero-apical STE-MI (250K/yr)
 - EF < 30%

- Antithrombotic Therapy
 - Anticoagulants
 - Anti platelet
 - Blood thinners

- Implication
 - Only 1/10 people who currently receive 'triple' therapy in US are actually at risk of LVT formation

Stroke Vol

End Dias. Vol

- ½ patients receiving triple therapy are at high risk of bleeding.
- Better risk stratification metrics are needed.
- LVT risk determined by a complex coupling between flow dynamics and coagulation biochemistry.

EF=-

Stratification of LVT Risk?

Group	Ν	Description
LVT	25	Patients with diagnosed LVT
CMP	25	Severe cardiomyopathy; no LVT
NORMAL	25	Normal

Approach

Modeling Approach

Coagulation Cascade

- Extrinsic (Tissue-factor) Pathway
- Damaged wall expose tissue factor (TF)
- TF-VIIa initiates reactions
- Produce Thrombin
- Thrombin activates other factors
- Burst of Thrombin Production

Role of Thrombin

TF → Thrombin Coagulation Cacade (CC)

18 Species Reactions (Biasetti et al, 2012) IX $IX + TF : VIIa \xrightarrow{k_6} IX : TF : VIIa \xrightarrow{k_{11}} TF : VIIa + IXa$ TF: VIIa $D \approx 1e^{-8} (m^2/s)$ IX:TF:VIIa $X + TF: VIIa \xrightarrow{k_6} X: TF: VIIa \xrightarrow{k_{12}} TF: VIIa + Xa$ S: Stoichiometric Matrix IXa $X + VIIIa : IXa \xrightarrow{k_6} X : VIIIa : IXa \xrightarrow{k_{13}} VIIIa : IXa + Xa$ r_i : Reaction rate X X:TF:VIIa $IX + Xa \xrightarrow{k_{15}} Xa + IXa$ $\frac{\partial C_i}{\partial t} + (\vec{U} \cdot \nabla)C_i - D\nabla^2 C_i = R_i$ (18 Eqs.) $R_i = \mathbf{S} \cdot r_j$ Xa $V + Xa \xrightarrow{k_1} Xa + Va$ VIIIa : IXa VIII + Xa $\xrightarrow{k_3}$ Xa + VIIIa X:VIIIa:IXa $V + \Pi a \xrightarrow{k_2} \Pi a + Va$ V VIII + IIa $\xrightarrow{k_4}$ IIa + VIIIa Va Initial concentrations (mol/m³) $II + Va : Xa \xrightarrow{k_6} II : Va : Xa \xrightarrow{k_{14}} Va : Xa + mIIa$ VIII $C_{1X} = 9e - 5; C_{X} = 1.7e - 4$ VIIIa mIIa + Va : Xa $\xrightarrow{k_9}$ Va : Xa + IIa IIa (Thrombin) $C_v = 2e - 5; C_{vm} = 7e - 7$ VIIIa + IXa $\xrightarrow{k_7}$ VIIIa : IXa II (Pro-thrombin) $C_{VIII_{a}} = 1e - 11; C_{II} = 1.4e - 3$ $Va + Xa \xrightarrow{k_8} Va : Xa$ Va:Xa (Pro-thrombin) II: Va: Xa C_{TF:VIIa.wall}: Prescribed on infarct mIIa

Platelet Activation and Deposition

JOHNS HOPKINS U n i v e r s i t y

Polymerization of Fibrinogen \rightarrow Fibrin

Fibrinogen

$$\frac{\partial}{\partial t}C_f = -(\vec{U}\cdot\nabla)C_f + D\nabla^2 C_f - \frac{k_t C_f}{\nabla}$$

Fibrin (Monomer)

$$\frac{\partial}{\partial t}C_m = -(\vec{U}\cdot\nabla)C_m + D\nabla^2 C_m + k_t C_f + k_p C_m^2$$

$$k_{cat} = 84 \,\text{s}^{-1}$$

$$K_m = 7.2 \times 10^{-3} \,\text{mol/m}^3$$

$$k_p = 8.2 \times 10^2 \,(\text{mol/m}^3)^{-1} \text{s}^{-1}$$

$$C_{f,0} = 9 \times 10^{-3} \,\text{mol/m}^3$$

Conversion by Thrombin

$$k_t = \frac{k_{cat}C_{IIa}}{K_m + C_f}$$

(Neeves et al. 2010, Biophysics J)

Canonical Models- Comparative Study Design

Clinical Translation?

- What *flow metric* can be used for the LVT risk prediction
 - Quantified correlation between flow metrics and coagulation
 - Could be obtained from echo PI or CMR

Residence Time (RT)

- -How long blood volume stays in ROI
- -Near damaged Wall Residence Time (NWRT)
- -Decreased flow strength leads to high NWRT

$$\frac{d}{dt}\tau_{NW} = \left(\frac{\partial}{\partial t} + \vec{U} \cdot \nabla\right)\tau_{NW} = H(d_0 - d_w)$$

Damaged wall

Marsden et al.

Predicted Thrombogenic Risk

JOHNS HOPKINS U n i v e r s i t y

Average Surface Distributions

Patient-Specific Model from Multimodal Data Registration

Chemo-Fluidic Interaction

Vortex Dynamics

Evolution of flow and thrombin

Time averaged flow and thrombin accumulation

JOHNS HOPKINS UNIVERSITY

192x192x256 (9.4M) grid points

Hemodynamics and Coagulation

Averaged flow and thrombin accumulation

LVT01 LVT02 **LVT09** EDV=334 mL, EF=40% EDV=178 mL, EF=47% EDV=417 mL, EF=39% Mean Flow (m/s) Mean Flow (m/s) Mean Flow (m/s) 0.2 0.2 0.2 0 0 0 Thrombin: **1e-5** μmol/m³ Thrombin: 1e-6 μmol/m³ Thrombin: 5e-4 μmol/m³ Septa Inferio Infarct **Bound PT** Infarct **NWRT Bound PT** Infarct **Bound PT NWRT** NWRT

NWRT as a Predictor for Thrombosis?

Residence time of flow in the vicinity of the infarct is a key indicator of LVT risk.

VERSITY

How to obtain a clinical measure of NWRT??

Stratification of LVT Risk?

Group	Ν	Description
LVT	25	Patients with diagnosed LVT
CMP	25	Severe cardiomyopathy; no LVT
NORMAL	25	Normal

A New Metric for LVT Risk

Normal LVs High mixing and washout <1% of blood cells stay in ventricle for >5 cycles

. .

Cited Papers

 Seo, Jung Hee, Thura Abd, Richard T. George, and Rajat Mittal. "A Coupled Chemo-Fluidic Computational Model for Thrombogenesis in Infarcted Left Ventricles." *American Journal of Physiology-Heart and Circulatory Physiology* (2016): ajpheart-00855. Published 25 March 2016 Vol. no., DOI: 10.1152/ajpheart.00855.2015.