

Modeling and Analysis of Heart Murmurs

IV

Rajat Mittal, Jung Hee Seo, Hani Bakhshae, Chi Zhu Department of Mechanical Engineering & Division of Cardiology

> Andreas Androu, Guillaume Garreau Electrical Engineering

> > Johns Hopkins University

Flow Simulation & Analysis Group

Cardiac Auscultation

- 3000 year old technique
- Cheap
- Non-invasive, high sensitivity
- Good as a screening tool

But...

- Low specificity (high false positives)
- Diagnosis is based on the empirical/statistical correlation
- Source mechanism of murmurs is poorly understood
- No modality provides simultaneous assessment of source and measurement

Digital Stethoscope

BioSignetic Corporation

Murmur Scores	
Intensity	157.40
Duration	94.38
Frequency	118.43
Half Bandwidth	21.53
Murmur Grade	5

60% of all pediatric murmurs leading to referral are "innocent"

Computational Hemo-acoustics

Can computational modeling provide the missing link between cause (pathology) and effect (sound)?

Surface fluctuation on the chest

Structural wave Propagation

Pressure Fluctuation in the Heart

Computational Hemo-acoustics (CHA) directly simulate the above procedure:

- Prediction of murmur generation/propagation
- Source mechanism of murmurs
- Better Disease Hemodynamics Sound (Auscultation) relation

Present Approach:

- -Immersed Boundary Method based Hybrid Approach
- Blood Flow IBM Incompressible Navier-Stokes solver
- Flow induced sound Linearized Perturbed Compressible Equations (LPCE)
- Sound Propagation in tissue Linear wave equation

Computational Hemoacoustics

JOHNS HOPKINS U n i v e r s i t y

Murmur Associated with Aortic Stenosis

IOHNS HOPKINS UNIVERSITY

Aortic Stenosis Murmur

Cardio-Thoracic Phantom Studies

Acoustic Sensors

Biopac sensor attached to the Micromanipulator

HP sensor attached to the Micromanipulator

Silicone Rubber- Tissue Mimicking Material

- Silicone rubber, Ecoflex 010 (Smooth-on)
 - Easy to produce
 - Extremely stable
 - Non-toxic and
 - Negligible shrinkage
- Procedure to make \rightarrow
 - Mixing Part A part B,
 - Adding Silicon thinner,
 - Degassing for 3-4 min in (-29 in Hg) to remove air bubbles

Murmur Generating

3D printed Casts

Fluid Flow Circuit

Biopac sensor attached to the Micromanipulator

JOHNS HOPKINS

HP sensor attached to the Micromanipulator

Cardiothoracic Phantom-2nd generation

- Adding lung to the phantom
- Foam is used to model the lung
- Non-axisymmetric model

Experimental Measurements

Outer-surface radial accelerations

Computational/Experimental Studies

Simple model for the aortic stenosis murmur

Material properties: Tissue mimicking, viscoelastic gel (EcoFlex-10)

$$\label{eq:rho} \begin{split} \rho = & 1040 \ \text{kg/m^3} \\ \text{K} = & 1.04 \ \text{GPa} \quad (\text{c}_{\text{b}} = & 1000.0 \ \text{m/s}) \\ \text{G} = & 18.39 \ \text{kPa} \quad (\text{c}_{\text{s}} = & 4.2 \ \text{m/s}) \\ \mu = & 14 \ \text{Pa s} \end{split}$$

Other parameters: U=0.25 m/s D=1.5875 cm D_T =9.84 cm (gelA), 16.51 cm (gelB)

c.f.

Biological soft tissue: K=2.25 GPa (c_b =1500 m/s) G=0.1 MPa (c_s =10 m/s) μ =0.5 Pa s

Computational Modeling

Hemodynamics IBM, Incompressible N-S

$$\nabla \cdot \vec{U} = 0, \ \frac{\partial \vec{U}}{\partial t} + (\vec{U} \cdot \nabla)\vec{U} + \frac{1}{\rho}\nabla P = v\nabla^2 \vec{U}$$

Elastic wave eq. for viscoelastic material

Generalized Hooke's law Kelvin-Voigt model

$$\frac{\partial \mathbf{p}'_{ij}}{\partial t} + \lambda \frac{\partial \mathbf{u}'_{k}}{\partial \mathbf{x}_{k}} \delta_{ij} + \mu \left(\frac{\partial \mathbf{u}'_{i}}{\partial \mathbf{x}_{j}} + \frac{\partial \mathbf{u}'_{j}}{\partial \mathbf{x}_{i}} \right) = 0$$
$$\frac{\partial \mathbf{u}'_{i}}{\partial t} + \frac{1}{\rho} \frac{\partial \mathbf{p}'_{ij}}{\partial \mathbf{x}_{j}} = \frac{\eta}{\rho} \frac{\partial}{\partial \mathbf{x}_{j}} \left(\frac{\partial \mathbf{u}'_{i}}{\partial \mathbf{x}_{j}} + \frac{\partial \mathbf{u}'_{j}}{\partial \mathbf{x}_{i}} \right)$$

High-order IBM, 6th order Compact Finite Difference Scheme, 4 stage Runge-Kutta method

Flow Simulation

3D Elastic Wave Simulation

Radial velocity fluctuation contours

UNIVERSITY

 \bullet 200x200x320 (12.8 M), about 60 hrs with 1024 cores for real time 0.8 sec

Comparison with Experimental Measurements

Outer-surface radial accelerations

Free-Space Green's Tensor

Analytical estimation of elastic wave solution (no geometrical effects)

$$o\frac{\partial^2 u_i}{\partial t^2} - \left(\lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})\right) \frac{\partial^2 u_l}{\partial x_j \partial x_k} = f_i(t) \delta(\vec{r})$$

$$u_{i}(t) = \frac{1}{2\pi} \int U_{i}(\omega) e^{-i\omega t} d\omega$$
$$f_{i}(t) = \frac{1}{2\pi} \int F_{i}(\omega) e^{-i\omega t} d\omega$$

 $U_i(\vec{r},\omega) = G_{ij}(\vec{r},\omega)F_j(\omega)$

Green's tensor (Ben-Menahem & Singh, 1981)

$$G_{ij}(\vec{r},\omega) = \frac{ik_p}{12\pi(\lambda + 2\mu)} \left(\delta_{ij} h_0^{(1)}(k_p r) + (\delta_{ij} - 3\frac{x_i x_j}{r^2}) h_2^{(1)}(k_p r) \right)$$
$$-\frac{ik_s}{12\pi\mu} \left(-2\delta_{ij} h_0^{(1)}(k_s r) + (\delta_{ij} - 3\frac{x_i x_j}{r^2}) h_2^{(1)}(k_s r) \right)$$
$$k_p = \omega / c_p, \ c_p = \sqrt{(\lambda + 2\mu) / \rho}$$
$$k_s = \omega / c_s, \ c_s = \sqrt{\mu / \rho}$$

Evaluation of Radial Acceleration

Source Localization

$$u_{m} = \sum_{n=1}^{N} G(x_{m}; x_{n}) F_{n}$$
$$\begin{bmatrix} u_{1} \\ \vdots \\ u_{M} \end{bmatrix} = \mathbf{G} \begin{bmatrix} F_{1} \\ \vdots \\ F_{N} \end{bmatrix}$$

G: M by N complex matrix

 $[F] = \mathbf{G}^+[u]$

 $G^{\scriptscriptstyle +}\!\!:$ Pseudo inverse of G

Source Localization

Proceeding towards using a multi-sensor stethoscopic array (StethoVest) for automatic murmur localization

Computational Modeling

Computational Modeling

$$\frac{\partial U_{i}}{\partial t} + U_{j} \frac{\partial U_{i}}{\partial x_{j}} = -\frac{1}{\rho_{f}} \frac{\partial P}{\partial x_{i}} + v \frac{\partial^{2} U_{i}}{\partial x_{j}^{2}}$$

$$\frac{\partial U_{i}}{\partial x_{i}} = 0.$$
See: Mittal, R., *et al.*, JCP, 2008

Acoustic Solver:

$$\begin{split} \frac{\partial p_{ij}}{\partial t} &+ \lambda \frac{\partial v_k}{\partial x_k} \delta_{ij} + \mu \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) = 0 \\ \frac{\partial v_i}{\partial t} &+ \frac{1}{\rho_s} \frac{\partial p_{ij}}{\partial x_j} = \frac{\eta}{\rho_s} \frac{\partial}{\partial x_j} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) . \end{split}$$

 v_i – structure velocity. λ , μ – 1st and 2nd Lame's constants. ρ_s – density. K – bulk modulus, = 1.04 GPa. G – shear modulus, = 18.39 KPa. η – viscosity, = 14.0 Pa s.

Numerical methods: Interior nodes:

6th –order compact scheme Immersed boundary:

approximating polynomial method Time advancement:

4th –order Runge-Kutta method

See: Seo, J. H., & Mittal, R. , JCP,

Hemodynamic Simulation Results

x component of vorticity

Same contour level

50%

Hemodynamic Simulation Results

Contour of surface pressure

Source Location

Realistic Thorax Model

Need to account or thoracic structures on sound propagation

Cited Paper - Hemoacoustics

- Jung Hee Seo, Vijay Vedula, Theodore Abraham, and Rajat Mittal, "Multiphysics computational models for cardiac flow and virtual cardiography", Int. J. Num. Meth. Biomed. Eng., doi: 10.1002/cnm.2556, 2013.680, DOI: 10.1007/s10439-014-1018-4.
- Jung Hee Seo and Rajat Mittal, "A Coupled Flow-Acoustic Computational Study of Bruits from a Modeled Stenosed Artery", Medical & Biological Engineering & Computing, Vol 50(10) pp 1025-35, 2012.
- Andreou, A.G.; Abraham, T.; Thompson, W.R.; Jung Hee Seo; Mittal, R., "Mapping the cardiac acousteome: An overview of technologies, tools and methods," Information Sciences and Systems (CISS), 2015 49th Annual Conference on , vol., no., pp.1,6, 18-20 March 2015, doi: 10.1109/CISS.2015.7086899
- Bakhshaee, H.; Garreau, G.; Tognetti, G.; Shoele, K.; Carrero, R.; Kilmar, T.; Chi Zhu; Thompson, W.R.; Jung Hee Seo; Mittal, R.; Andreou, A.G., "Mechanical design, instrumentation and measurements from a hemoacoustic cardiac phantom," Information Sciences and Systems (CISS), 2015 49th Annual Conference on , vol., no., pp.1,5, 18-20 March 2015, doi: 10.1109/CISS.2015.7086901.
- Jung Hee Seo and Rajat Mittal, "A Coupled Flow-Acoustic Computational Study of Bruits from a Modeled Stenosed Artery", Medical & Biological Engineering & Computing, Vol 50(10) pp 1025-35, 2012.
- J. H. Seo and R. Mittal, "A Higher-Order Immersed Boundary Method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries", Journal of Computational Physics, 2011, Vol. 230, Issue 4, pp. 1000-1019.
- Jung Hee Seo, Vijay Vedula, Theodore Abraham, and Rajat Mittal, "Multiphysics computational models for cardiac flow and virtual cardiography", Int. J. Num. Meth. Biomed. Eng., doi: 10.1002/cnm.2556, 2013.680,