Floating on air

Physics of Fluids University of Twente Detlef Lohse Physics of Fluids University of Twente

Coworkers

Bram Borkent Wilco Bouwhuis Nicolas Bremond Henri Lhuissier Hanneke Gelderblom Stefan Gekle Alvaro Marin Devaraj van der Meer **Ivo Peters** Andrea Prosperetti **David Rivas** Jacco Snoeijer ErikJan Staat Chao Sun Peichun Amy Tsai Tuan Tran Roeland van der Veen **Koen Winkels** Xuehua Zhang

Droplet impact

Strong dependence on type of surface

... on cotton

Liquid: blood Nederlands Forensisch Institute

Impact on hydrophobic surface

p

low velocity

Impact on hydrophobic surface

high velocity

Phase space of impact

Phase space of impact

- Velocity
- Diameter
- Viscosity
- Surface tension
- Roughness of surface
- Temperatures
- Air pressure

Influence of air pressure on impact event

Xu, Zhang, Nagel, Phys. Rev. Lett. 94, 184505 (2005)

How come?

Sketch of impacting drop

Consequence: entrained bubble under droplet!

Van Dam, Le Clerc, Phys. Fluids 16, 3403 (2004)

Ultra-high-speed color interferometry

Direct measurements of air layer profiles under impacting droplets

van der Veen, Tran, Lohse, Sun, Phys. Rev. E 85, 026315 (2012); Bouwhuis et al., Phys. Rev. Lett. 109, 264501 (2012)

Interferometry for falling droplets

Water D = 2.0 mm U = 0.19 m/s We = 1.0

20000 fps

Water D = 2.0 mm V = 0.22 m/s We = 1.3

4800 fps

Water D = 2.0 mm V = 0.22 m/s We = 1.3

4800 fps

Reproducibility perfect!

Profile dynamics & dimple velocity allows to calculate velocity of outwards air flow

assume incompressibility

60 x higher air flow velocities!

Note the numbers...

$$Re \sim \frac{V_{air} h_e}{\nu_{air}}$$

 ~ 0.01

Air-flow under the drop is viscous flow!

Numerics & theory

Compare to BI calculations

Unsteady Bernoulli equation for liquid:

$$\partial_t \phi + 1/2 |\nabla \phi|^2 = -gz - \frac{\gamma}{\rho_l} \kappa(H(r,t)) - \frac{1}{\rho_l} (P_g(r,t) - P_\infty)$$

Obtain pressure from Stokes equation for gas (viscous!) in lubrication approximation

$$\partial_t H(r,t) - \frac{1}{r} \frac{\partial}{\partial_r} \left(\frac{r(H(r,t))^3}{12\eta_g} \partial_r P_g(r,t) \right) = 0$$

Solve the two coupled PDEs for $H(r,t) \& P_g(r,t)$

Dimensionless numbers

Weber number:

$$We = \frac{\rho_l R U^2}{\gamma}$$

Bond number:

Gas flow relevant: (inverse) Stokes number:

$$St = \frac{\eta_g}{\rho_l UR}$$

$$Ca = \frac{\eta_g U}{\gamma} = St \cdot We$$

Capillary number:

Profile & pressure

ethanol, U=1.12m/s, D=1.8mm, We=40

Profile dynamics in inertial regime: comparison with experiment

U=1.12m/s, We=40

no free parameter!

Under what conditions is the entrained bubble maximal?

large U (and/or larger R): inertia of impact makes smaller dimples

small U (and/or smaller R): capillary forces make smaller dimples

Entrapped bubble size at impact

Experimental & numerical data: dimple height

Indeed two regimes:

inertial regime
capillary regime

Analytical derivation of scaling laws in the two regimes

Inertial regime: Derivation of 4/3-scaling

horizontal lengthscale:

$$L \sim \sqrt{RH_d}$$

horizontal velocity:

 $u_x \sim LU/H_d$

gas pressure: Stokes equation:

$$\partial_x p \sim \eta_g \partial_y^2 u_x$$

(Mani, Mandre, Brenner, JFM 2010)

Inertial regime: Derivation of 4/3-scaling

liquid pressure from unsteady Bernoulli eq.:

 $\partial_t \phi \sim P_l / \rho_l$

dimensional analysis:

 $\phi \sim UL \qquad \partial_t \sim U/H_d$

liquid pressure:

 $P_l \sim \rho_l U^2 L / H_d$

Inertial regime: Derivation of 4/3-scaling

Droplet deforms once:

 $P_q \sim P_l$

Experimental & numerical data: dimple height

Scaling in capillary regime

balance capillary and viscous forces:

$$\partial_x(\gamma\kappa(H(x)) \sim \eta_g \partial_z^2 u_x$$

$$\frac{H_d}{R} \sim \sqrt{Ca} \sim \sqrt{St \ We} \sim \frac{\eta_g}{\sqrt{\gamma \rho_l R}} St^{-1/2}$$

Crossover, when:
$$St \sim Ca^{3/4}$$
Maximum in dimple height

at: $St \sim Ca^{3/4} \sim \frac{\eta_g^{6/7}}{(\gamma \rho_l R)^{3/7}}$

smaller St = larger U (and/or larger R):
inertia of impact makes smaller dimples

larger St = smaller U (and/or smaller R): capillary forces make smaller dimples

Impact on superheated surfaces

Tran, Staat, Prosperetti, Sun, Lohse, PRL 108, 036101 (2012)

Influence of surface temperature

 $T_{Leidenfrost} = 180^{\circ}C$ (static)

Static Leidenfrost effect

Johann Gottlob Leídenfrost (1756)

Towards the dynamic Leidenfrost effect

Experimental setup g D_{0} **7**_m • Liquids: water & FC-72 S • Surfaces: polished silicon, Ρ structured silicon, **sapphire** & carbon nano fibers Η • Control parameters: В $200^{o}\mathrm{C} \leq T \leq 600^{o}\mathrm{C}$ Μ С $0.5 \le \mathrm{We} = \frac{\rho D_0 V^2}{\sigma} \le 500$

Different boiling regimes:

I. Contact boiling

Side view recording

T = 400 °C We = 67.7

I. Contact boiling

Bottom interferometric view

Liquid makes contact with the surface

2. Gentle film boiling

Side view recording

T = 460 °C We = 66.7

2. Gentle film boiling

Bottom interferometric view

Liquid makes **no contact** with the surface: (dynamic) Leidenfrost state

Phase diagram water on smooth silicon

3. Spraying film boiling

Side view recording

T = 520 °C We = 65.4

Mechanism of spraying film boiling

 $Low \, Weber \, number$

High Weber number

Phase diagram water on smooth silicon

The three scenarios in comparison

Gentle film boiling

Contact boiling

T = 400 °C

T = 460 °C

T = 520 °C

Spraying film boiling

Is splashing possible in the Leidenfrost regime? (no contact!)

Film boiling splash

T = 200 °CD = 2.5 mmWe = 1390ethanol

Full phase space of boiling & splashing behavior

Transition to film boiling

Tran, Staat, Prosperetti, Sun, Lohse, Phys. Rev. Lett. 108, 036101 (2012)

below TL: increasing temperature suppresses splashes!

above T_L: much lower Wethreshold for splashing !!

How much do droplets spread?

Spreading of impacting droplets

Impact on (non-heated) superhydrophobic surface

Impact on **superheated** surface in film boiling regimes

We = 24

We = 32

Clanet et al., J Fluid Mech. 517, 199 (2004)

Looks identical!

What is the spreading of impacting droplets on standard and on superheated surfaces?

Maximal deformation of droplets at impact

 $D_0^3 \sim h D_{max}^2$

Clanet, Beguin, Richard, Quere, J. Fluid Mech. 517, 199 (2004)

I/4-scaling extremely robust

Impact on microstructured surfaces

Scaling also independent of contact angle as layer!

Tsai, Hendrix, Dijkstra, Shui, Lohse, Soft Matter 7, 11325 (2011)

Maximum spreading in film boiling regime

Maximum spreading in gentle & spraying film boiling regimes

Physical mechanism of enhanced spreading

- Vapor shoots out and drags liquid along!
- The more, the larger U, as then more liquid evaporates

Derivation of the 3/10 scaling law for impact on superheated surfaces

I. viscous driving force vs capillarity

 $\frac{\gamma}{H} \sim \mu_v \frac{U}{h}$

 $\Delta P \sim \rho V^2$

 D_{θ}

2. Pressure buildup drives viscous vapor flow

ΔP		U
$\overline{D_m}$	\sim	$\mu_v \overline{h^2}$

3. mass evaporation rate ~ flow rate

$$\frac{k\Delta T}{Lh}D_m^2 \sim \frac{\rho_v}{\mu_v}h^3\Delta P.$$

Non-dimensionalize

$$Pe = \frac{VD_0L\rho_v}{k\Delta T}$$

Resulting scaling laws

$$\Gamma \sim \frac{W e^{2/5}}{S t^{1/10} P e^{1/10}}$$

$$\Gamma \sim W e^{3/10}$$

$$\tilde{h} \sim \frac{W e^{1/5}}{S t^{3/10} P e^{3/10}}$$

 $\tilde{U} \sim \frac{St^{1/2}}{D_0^{1/2}}$

$$\tilde{h} \sim W e^{-1/10}$$

Predictions!

$$\tilde{U} \sim W e^0$$

... and when all velocity dependences are put into We:

Impact of suspension droplets

e.g.: paint (pigments!)

Boyer, Dijksman, Snoeijer, Lohse (2012)

Impact of 39%-suspension droplet

shear-thickening
Is there a splash at impact?

From spreading.... to splashing.... and spreading again!

Increasing impact speed

Is there a splash at impact?

Increasing impact speed

shear-thickening!

Impact of shear-thinning liquid

How do suspension droplets dry?

Marin, Gelderblom, Lohse, Snoeijer, Phys. Rev. Lett. 107, 085502 (2011)

How do such droplets dry?

"coffee-stain problem"

Marin, Gelderblom, Lohse, Snoeijer, Phys. Rev. Lett. 107, 085502 (2011) Avalanche of Particles in Evaporating Drops

A. G. Marin, H. Gelderblom, J. Snoeijer, D. Lohse Physics of Fluids, Univ. Twente

Microstructured substrates

Absence of an evaporation-driven wetting transition on omniphobic surfaces, Susarrey-Arce, Marín, Nair, Lefferts, Gardeniers, Lohse, van Houselt, Soft Matter 8 (2012) Susarrey-Arce et al. J. Micromech. Microeng. 23 (2013)

Diehard superhydrophobic substrates

Cassie-Baxter or "fakir" state

Wenzel or "impaled" state

Drying a colloidal suspension on a die-hard surface

Particle diameter 1µm Droplet initial volume: 10µl Number of particles ~ 10⁷

TELEVISION DE LE CONTRACTOR DE LE CONTRACT

Marin et al., PNAS 109, 16455 (2012)

Microscopic soccer balls!

Different structures?

Making of extremely controlled droplets: inkjet printing

Piezoacoustic inkjet printing

High speed imaging: IMHz

Comparison experiment vs lubrication model

Satellite droplets

van Hoeve, Gekle, Snoeijer, Versluis, Brenner, Lohse, Phys. Fluids 22, 122003 (2010)

Stroboscopic imaging: iLIF

Comparison with lubrication model

Difference due to air friction!

Predictions from lubrication model for inks with different viscosity

Viscosity = 5.5mPas Viscosity = 8.25mPas Viscosity = 11mPas Viscosity = 16.5mPas Viscosity = 22mPas

Supersonic microjets through flow focusing!

v ~ 1000 m/s D ~ 10 μm

I. R. Peters et al., JFM 719, 587 (2013)

Mechanism: flow focusing

boundary integral

experiment

I. R. Peters et al., JFM 719, 587 (2013)

Application: Needle-free injection

Existing methods

Piston-syringe system

- Severe deceleration
- Scattered pattern
- ➡ Causes pain
- ➡ Insufficient penetration
- ➡ Little volume control

Novel method

Application: Needle-free injection

Equivalent to human body

Tagawa et al, Lab on Chip (2013)

Non-diffusive shape

Impact on structured surfaces

Tsai, van der Veen, van der Raa, Lohse, Langmuir 26, 9640 (2010)

OCTOBER 20, 2009 VOLUME 25, NUMBER 20 publicade org/Langmuir

P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, & D. Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir **25**, 12293 (2009).

Soft Matter

P. Tsai, M. Hendrix, R. Dijkstra,
L. Shui & D. Lohse,
Microscopic structure influences
macroscopic splash at large We,
Soft Matter 7, 11325 (2011).

Structure of the surfaces

Transparent PDMS (polydimethylsiloxane)

h = 6 μm w = 5 μm

Entrapped air bubbles & wetted central region

 D_a = diameter of entrapped air disk D_w = diameter of wetted area D_L = diameter of max. spreading lamella

$$w = 5\mu m, h = 6\mu m, d = 10\mu m$$

Impact on superheated carbon nanofiber jungle surface

H ~ 4 μm; d_{CNF} ~ (80-200) nm

D ~ 2.27 mm U ~ 0.4 m/s

SEM

T=350°C

T=440°C

Surface manipulation and controlled cavitation

Bremond, Arora, Ohl, Lohse, Phys. Rev. Lett. 96, 224501 (2006); Borkent, Gekle, Prosperetti, Lohse, Phys. Fluids 21, 102003 (2009)

Massive pressure reduction: Uncontrolled cavitation & bubble nucleation

I Mfps movie, Si surface, nucleation at natural crevices

Offer system weak spots through micro- & nano-machined "artifical crevices"

made by focused ion-beam

2000nm

900nm

500nm

100nm

Pattern of bubbles

Shielding effect of bubbles: experiment vs theory

Cavitation from nanopits? How small can we go?

900nm

100nm

Calculate & measure phase diagram of bubble nucleation

Theoretical prediction

Perfect agreement theory vs experiment

No free parameter!

Use micropits to stimulate bubble production and thus to enhance chemical activity

Rivas, Prosperetti, Zijlstra, Lohse, Gardeniers, Angw. Chem. Int. Ed. 49, 9699 (2010); Rivas, Stricker, Zijlstra, Gardeniers, Lohse, Prosperetti, Ultrason. Sonochem. 20, 510 (2013).

Acoustic streaming around weakly driven meniscus

top view

side view

Stronger driving: Bubble pinch-off out of pit

f = 80.8 kHz 500,000 fps (0.16 acoustic cycles/frame)

Average pinch-off rate: I3.4 kHz (I per 6 acoustic cycles)

Three-pit geometry

low power

high power

Switching between low and high intensity

Correlate light reflection & chemical activity of microbubbles emitted from micropits

Rivas, Prosperetti, Zijlstra, Lohse, Gardeniers, Angw. Chem. Int. Ed. 49, 9699 (2010)

Strongly driven multiple micropits

Micro-pit dimensions R=9.6 µm H=20 µm

```
f = 221 kHz
f_r = 210 kHz
```


Surface nanobubbles and controlled nucleation of droplets

Surface nanobubbles

Why don't nanobubbles dissolve?

How to easily produce surface nanobubbles?

S. T. Lou et al., J. Vac. Sci. Tech.-B 18, 2573 (2001)

"Ethanol-water exchange"

Do they cavitate?

7

There is no correlation between nanobubbles and nucleated bubbles: Superstability of surface nanobubbles

(Lack of) cavitation activity

Nanobubbles in AFM

Borkent, Dammer, Schönherr, Vancso and Lohse, Phys. Rev. Lett. 98, 204502 (2007)

There is no such correlation!

Nanobubbles even "survive" pressure reductions down to -60 bar!

"Superstability"!

Nanopits do nucleate bubbles

Nanobubbles (of same size/volume) do NOT nucleate bubbles

Coworkers & funding

Bram Borkent Wilco Bouwhuis Nicolas Bremond Henri Lhuissier Hanneke Gelderblom Stefan Gekle Alvaro Marin Devaraj van der Meer **Ivo Peters** Andrea Prosperetti **David Rivas** Jacco Snoeijer ErikJan Staat Chao Sun Peichun Amy Tsai Tuan Tran Roeland van der Veen **Koen Winkels** Xuehua Zhang

Nanobubbles in MD simulations

Nanobubbles pin receding surface contact line and cause deposits on surface

