Formation of columnar baroclinic vorticies in thermally stratified nonlinear spin-up*

> J. Rafael Pacheco SAP Americas, Scottsdale, Arizona

School of Mathematical and Statistical Sciences Arizona State University

Environmental Fluid Dynamics Laboratories Department of Civil Engineering and Geological Sciences The University of Notre Dame

Rome, June 11, 2013

*Collaborator: Roberto Verzicco at Universita' di Roma 'Tor Vergatta', Italy.

Outline

- Overview
 - What are spin-up and baroclic flows?
- Background
 - Laboratory experiments
 - Numerical simulations
- Results
- Conclusions
- Problems to consider in the future

Overview

Definition of spin-up/spin-down: an impulsive change of the rotation rate of a rigid container filled with a liquid

- fluid assumed to be in solid body rotation
- rotation rate of the container modified: increased (spin-up) or decreased (spin-down)
- adjustment of the primary circulation to the new rotation rate

Background

- Existence of separated time scales: Ekman number $E=v/\Omega H^2$
 - Ekman boundary layer development: $\tau_e = \Omega^{-1}$
 - Spin-up due to secondary circulation: $\tau_s = \Omega^{-1} E^{-1/2}$
 - Viscous dissipation of residual motions: $\tau_v = \Omega^{-1} E^{-1}$
- Large body of work on the axisymmetric stratified spin-up, but not much on the non-axisymmetric counterpart
 - Numerical models: axisymmetric in nature
 - Experimental investigations: mostly in small facilities

Geophysical flows

Response mechanism to external forcing which arises in oceans

Ekman transport moves surface waters away from the coast; these are replaced by denser water that wells up from below

Magnetohydrodynamic flows

Response mechanism to magnetic forcing which arises in the inner core of the earth

Example: Mercury is known to have an at least partially fluid core, and during its orbit its rotation rate increases and decreases periodically.

Baroclinic fluid

Spin-up homogeneous fluid

centerline

sidewall

Streamlines for homogenous spin-up

Dashed lines – Ekman layers & sidewall Stewartson layers (all of which transport mass) *Stewartson* (1957) *Greenspan & Howard* (1963)

$$\varepsilon = \frac{\Delta \Omega}{\Omega} \qquad E = \frac{v}{\Omega H^2}$$
$$\tau_s = \Omega^{-1} E^{-1/2}$$

Spin-up stratified fluid

centerline

sidewall

Streamlines for stratified spin-up

- Inhibition of vertical motions by buoyancy force
- Presence of horizontal density gradients
- Baroclinic instability (Bu < 1) $Bu \equiv N^2 H^2 / \Omega^2 R^2$
- Vertical shear of the horizontal velocity
- Ekman layers have the same structure as in homogeneous case

Stratified spin-up

+ <u>Smirnov, Pacheco and Verzicco Physics of Fluids (2010)</u>

axisymmetric flows non-axisymmetric flows • experimental study + numerical work

 R_l = radius of lid R = radius of horizontal boundaries

Experiments of Smirnov et al. (2005) Salinity stratification

Stratified spin-up

Parameters:

 $\epsilon = 0.24$ $B_u = 0.24$ $f = 0.5 \text{ s}^{-1}$ $R_d = 22 \text{ cm}$ $\Omega^{-1}\text{E}^{-1} \sim 4.5 \text{ hours}$

(f) 43.2

 $\frac{t/T}{(a) 11.6}$ (b) 20.2 (c) 30 (d) 32.6

(e) 39.2

(a) (b) (c) (d`

Description of the problem

Consider the flow in a cylindrical region with radius R and height h.

At t = 0 the system is accelerated from its initial state of solid body rotation with angular velocity Ω_i to a new rotation rate $\Omega = \Omega_i + \Delta \Omega$.

Governing equations

$$\frac{D\vec{u}}{Dt} + 2\vec{\Omega} \times \vec{u} = -\frac{1}{\rho_o} \nabla p - \frac{\rho}{\rho_o} g\vec{e}_z + \frac{\rho}{\rho_o} \vec{\Omega}^2 r\vec{e}_r + v \nabla^2 \vec{u}, \quad \text{Initial conditions} \quad u = w = 0, v = -\Delta\Omega r$$
$$\frac{DT}{Dt} = \kappa \nabla^2 T, \qquad \nabla \cdot \vec{u} = 0, \qquad \rho = \rho_o (1 - \alpha T). \qquad \qquad \frac{\partial T}{\partial z} = \frac{\Delta T}{h}$$

First 3D numerical simulations of spin-up with thermal stratification and adiabatic/isothermal endwalls*

Boundary conditions (BC):

Adiabatic (Neumann) BC

$$\frac{\partial T}{\partial z} = 0$$
, at $z = 0, h$

Isothermal (Dirichlet) BC

$$T = T_b$$
, at $z = 0$,
 $T = T_t$, at $z = h$

Smirnov, Pacheco and Verzicco Physics of Fluids 22 (11): (2010)

Navier Stokes equations

$$(\partial_t + \boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} = \boldsymbol{\nabla}\boldsymbol{p} + B^2 \boldsymbol{\Theta} \boldsymbol{e}_z + 2\boldsymbol{u} \times \boldsymbol{e}_z - F B^2 \boldsymbol{\Theta} \boldsymbol{r} \boldsymbol{e}_r + E \boldsymbol{\nabla}^2 \boldsymbol{u},$$

$$(\partial_t + \boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{\Theta} = \sigma^{-1} E \boldsymbol{\nabla}^2 \boldsymbol{\Theta}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0,$$

Ekman number : $E = \nu/\Omega h^2$, Froude number : $F = \Omega^2 h/g$, Burger number : $B = N/\Omega$, Prandtl number : $\sigma = \nu/\kappa$, aspect ratio: $\Gamma = R/h$, Rossby number : $\epsilon = \Delta \Omega/\Omega$,

Results of numerical simulations

Look at the isotherms on the planes $\theta = 0 - \pi$

Neumann boundary conditions for temperature

Dirichlet boundary conditions for temperature

Vortex structure

Vortex structure identified by the iso-surfaces of Q = 0 (Hunt et al. 1988) colored by temperature

Isothermal BC

Observations:

- Columnar eddies seen in experiments are reproduced in a numerical setting
- The emergence of these columnar eddies are influenced by the type of boundary condition (adiabatic/isothermal)
- Forced stratification suppresses the instability, i.e. <u>isothermal</u> BC are more stable than <u>adiabatic</u> BC
- Columnar vortices with isothermal boundary conditions appear at a later time compared to those with adiabatic boundary conditions

Why?

Hypothesis: production of baroclinic vorticity is responsible for the formation of vertical structures

Vorticity: $(\partial_t + u \cdot \nabla)\omega = (\omega + 2e_z) \cdot \nabla u - F B^2 \nabla (r\Theta) \times e_r + B^2 \nabla \Theta \times e_z + E \nabla^2 \omega$

Baroclinic vorticity:
$$\omega_b = \nabla \Theta \times e_z = \left(\frac{1}{r}\frac{\partial}{\partial \theta}e_r - \frac{\partial}{\partial r}e_\theta\right)\Theta.$$

Radial variation cannot produce vertical structures!

Azimuthal variation cannot produce vertical structures!

Feedback mechanism

Kinetic energy growth rate of the azimuthal disturbance:

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \frac{1}{2} |\vec{u}'|^2 \mathrm{d}V = -\int_{V} \vec{u}' \cdot (\vec{u}' \cdot \nabla' \vec{u}) \mathrm{d}V + B^2 \int_{V} \Theta u'_z \mathrm{d}V - FB^2 \int_{V} \Theta ru'_r \mathrm{d}V - E \int_{V} |\nabla' \vec{u}|^2 \mathrm{d}V$$

- •h₁: shear of the mean axisymmetric flow (barotropic production)
 •h₂: conversion of gravitational potential energy (baroclinic production)
 •h₃: conversion of centrifugal potential energy
- • h_4 : viscous dissipation

Kinetic energy growth rate of the azimuthal disturbance

•h₁: shear of the mean axisymmetric flow (barotropic production)
•h₂: conversion of gravitational potential energy (baroclinic production)
•h₃: conversion of centrifugal potential energy
•h₄: viscous dissipation

Turn off the baroclinic term

Conclusions*

- Radial variations of baroclinic vorticity produce an unstable system
- The azimuthal variations of baroclinic vorticity responsible for the formation of columnar vortices at late stages of flow development via feedback mechanism (enhances axial vorticity and increases vertical shear)
- Shear-free lateral boundary is more unstable
- Elliptical instability not important in this geometry

What other aspects of spin-up/down can be studied?

- Study in parameter space $(\Gamma, B, \varepsilon, \sigma)$
- Spin-up with sloping bottom (Ekman arrest)
- Uneven bottom boundary (wavy bottom)
- Heating/cooling on horizontal walls
- Non-Newtonian flows (lava flows)
- Different geometries: annulus, cone, half cone, half cylinder, etc.
- Spin-down
- Libration
- Turbulence!!!

Ongoing

- Inertial waves
- Non-Boussinesq equations
- Non-Newtonian flows
- Particulate flows
- Gravity currents

Examples

- Spin-up annulus
- Particulate flows
- Inertial waves

*Pacheco, J. R., Ruiz-Angulo, A., Zenit, R., and Verzicco, R., `Fluid velocity uctuations in a collision of a sphere with a wall,' *Physics of Fluids* **23**(6): 063301, 2011 ^Pacheco, J. R. Lopez, J. M. Verzicco, R. `Generation of inertial waves by a sphere settling in a rotating fluid.' *J. Fluid Mech.* 2012.

Inertial waves

Chaotic(?) mixing

