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Overview 

•  fluid assumed to be in solid body rotation 
•  rotation rate of the container modified: increased (spin-up) or  
  decreased (spin-down) 
•  adjustment of the primary circulation to the new rotation rate 

Definition of spin-up/spin-down: an impulsive change     
of the rotation rate of a rigid container filled with a liquid 



Background 

- Ekman boundary layer development:	
  τe = Ω-1 

- Spin-up due to secondary circulation:	
  τs = Ω-1E-1/2 
- Viscous dissipation of residual motions: τv=Ω-1E-1 

•  Existence of separated time scales:  Ekman number  E=ν/ΩH2 

•  Large body of work on the axisymmetric stratified spin-up,  
   but not much on the non-axisymmetric counterpart 

- Numerical models: axisymmetric in nature 

- Experimental investigations: mostly in small facilities 

	
  



Geophysical flows 
Response mechanism to external forcing  
which arises in oceans 

Ekman transport moves surface waters 
away from the coast; these are replaced 
by denser water that wells up from below 



Magnetohydrodynamic flows 
Response mechanism to magnetic forcing  
which arises in the inner core of the earth 

Example: Mercury is known to have an at least partially fluid core, and 
during its orbit its rotation rate increases and decreases periodically. 



Baroclinic fluid 



Spin-up homogeneous fluid 

Streamlines for homogenous 
spin-up 

centerline sidewall 

Dashed lines – Ekman layers & 
sidewall Stewartson layers     
(all of which transport mass) 

Stewartson (1957)  
Greenspan &  Howard (1963) 
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Spin-up stratified fluid 

Streamlines for stratified  
spin-up 

centerline sidewall 

•  Inhibition of vertical motions by  
  buoyancy force 

•  Presence of horizontal density gradients  

•  Baroclinic instability (Bu<1)  
  Bu ≡ N2H2/ Ω2R2 

•  Vertical shear of the horizontal velocity 

•  Ekman layers have the same structure  
  as in homogeneous case 



Stratified spin-up 
Impulsive 

Incremental 
Buzina & Veronis (1971) • 
Saunders & Beardsley (1975) •  
Lee (1975) • 
Barcilon et al. (1975) + 
Hyun et al (1982) + 
Kanda (2004) • 
Smirnov et al. (2005) • 

Rl « R 

axisymmetric flows 
non-axisymmetric flows 

Entire system Local forcing 

Incremental From rest 

• experimental study 
+ numerical work 

Greenspan (1980) • 
Hyun et al (1983) + 
Flor et al. (2002) •+ 
Flor et al. (2004) • 
Kanda (2004) • 
 

Rl ~R 
Moulin & Flor (2004) • Pedlosky (1970) • 

Linden (1977) • 
Spence et al. (1992) • 
Munro & Davies (2006) • 

Rl  = radius of lid 
R   = radius of horizontal boundaries 

+ Smirnov, Pacheco and Verzicco Physics of Fluids (2010) + 



Experiments of Smirnov et al. (2005) 
Salinity stratification 

Ω(1 - ε) → Ω ε = ΔΩ/Ω 

+ H 

− H 



Stratified spin-up  

(a) (b) 

(c) (d) 

(e) (f) 

Parameters: 

ε  = 0.24    Bu = 0.24 

f = 0.5 s-1  Rd = 22 cm 

Ω-1E-1 ~ 4.5 hours 
 
 
t/T 

(a) 11.6      (b) 20.2  

(c) 30      (d) 32.6  

(e) 39.2      (f) 43.2  



Consider the flow in a cylindrical region with radius R and height h.  

At t = 0 the system is accelerated from its initial state of solid body rotation  
with angular velocity Ωi to a new rotation rate Ω = Ωi + ΔΩ. 
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Description of the problem 



Boundary conditions (BC): 

Adiabatic (Neumann) BC 
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Isothermal (Dirichlet) BC 
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First 3D numerical simulations of spin-up with thermal 
stratification and adiabatic/isothermal endwalls* 

*Smirnov, Pacheco and Verzicco Physics of Fluids 22 (11): (2010)  



Navier Stokes equations 



Isothermal BC	
  Adiabatic BC	
  

Results of numerical simulations 
Look at the isotherms on the planes θ = 0 - π	



R/h=3.3, ε=0.73 



Vortex structure identified by the iso-surfaces of Q = 0 (Hunt et al. 1988) 
colored by temperature	



Isothermal BC	
  Adiabatic BC	
  

Vortex structure 



Isothermal BC	
  Adiabatic BC	
   R/h=3.3, ε=1 



Observations: 
•  Columnar eddies seen in experiments are reproduced  in 

a numerical setting 

•  The emergence of these columnar eddies are influenced 
by the type of boundary condition (adiabatic/isothermal) 

•  Forced stratification suppresses the instability, i.e. 
isothermal BC are more stable than adiabatic BC 

•  Columnar vortices with isothermal boundary conditions 
appear at a later time compared to those with adiabatic 
boundary conditions 

Why? 



Baroclinic	
  vorticity: 

Vorticity: 

Radial variation cannot produce vertical structures! 

Azimuthal variation cannot produce vertical structures!  

Hypothesis: production of baroclinic vorticity 
is responsible for the formation of vertical 
structures 

Feedback mechanism 



Vortex structure: 

Contours of 
temperature 
(z=0.15): 
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Kinetic energy growth rate of the azimuthal disturbance: 

• h1: shear of the mean axisymmetric flow (barotropic production) 

• h2: conversion of gravitational potential energy (baroclinic production) 

• h3: conversion of centrifugal potential energy 

• h4: viscous dissipation 

h1 h2 h3 h4 



Kinetic energy growth rate of the azimuthal disturbance 

Isothermal BC	
  Adiabatic BC	
  

• h1: shear of the mean axisymmetric flow (barotropic production) 

• h2: conversion of gravitational potential energy (baroclinic production) 

• h3: conversion of centrifugal potential energy 

• h4: viscous dissipation 



Turn off the baroclinic term 



•  hi terms of the energy 
equation of azimuthal 
disturbances 

•  Total baroclinic 
vorticity components 

•  Modal energy  em 



Conclusions* 

•  Radial variations of baroclinic vorticity produce an unstable system 
•  The azimuthal variations of baroclinic vorticity responsible for the 

formation of columnar vortices at late stages of flow development via 
feedback mechanism (enhances axial vorticity and increases vertical shear) 

•  Shear-free lateral boundary is more unstable 
•  Elliptical instability not important in this geometry 

*Pacheco, J. R. and Verzicco, R. `Formation of columnar baroclinic vortices in thermally stratified non-linear spin-up,'  J. of Fluid Mech. 2012 



What other aspects of spin-up/down 
can be studied? 

•  Study in parameter space (Γ, B, ε, σ) 
•  Spin-up with sloping bottom (Ekman arrest) 
•  Uneven bottom boundary (wavy bottom) 
•  Heating/cooling on horizontal walls 
•  Non-Newtonian flows (lava flows) 
•  Different geometries: annulus, cone, half cone, half cylinder, etc. 
•  Spin-down 
•  Libration 
•  Turbulence!!! 



Dirichlet BC	
  Neumann BC	
  

Short annulus 



Thank you! 



Dirichlet BC	
  Neumann BC	
  



Ongoing 

•  Inertial waves 
•  Non-Boussinesq equations 
•  Non-Newtonian flows 
•  Particulate flows 
•  Gravity currents 



Examples 

•  Spin-up annulus 
•  Particulate flows 
•  Inertial waves 
 



Particulate flows 

*Pacheco,	
  J.	
  R.,	
  Ruiz-­‐Angulo,	
  A.,	
  Zenit,	
  R.,	
  and	
  Verzicco,	
  R.,	
  `Fluid	
  velocity	
  uctua?ons	
  in	
  a	
  collision	
  of	
  a	
  sphere	
  with	
  a	
  wall,‘	
  Physics	
  of	
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  23(6):	
  063301,	
  2011	
  
^Pacheco,	
  J.	
  R.	
  Lopez.	
  J.	
  M.	
  Verzicco,	
  R.	
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  of	
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  a	
  rota?ng	
  fluid.’	
  J.	
  Fluid	
  Mech.	
  2012.	
  

No rotation* Rotation^ 



Inertial waves 



Chaotic(?) mixing 

Pacheco J. R.   Mixing enhancement in electro-osmotic flows via modulation of electric fields. Physics of Fluids, 20 (9): pp. 093606, 2008.  


