Turbulence in the solar wind, spectra from Voyager 2 data

F. Fraternale1, L. Gallana1, M. Iovieno1, J.D. Richardson2, M. Opher3, D. Tordella1

1Dipartimento di Ingegneria Meccanica e Aerospaziale Politecnico di Torino

2Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology

3Astronomy Department, Boston University

Vortical Structures & Wall Turbulence, Prof. Orlandi Anniversary

Frascati, 19–20 September 2014
Turbulence in the solar wind, spectra from Voyager 2 data

Table of contents

1. Introduction

2. Solar wind statistics from V2 data (year 1979, days 1–180)

3. Spectral analysis: methodology and validation

4. Spectral analysis: synthetic turbulence

5. Spectral analysis: V2 velocity and mag. field data

6. Rybicki &Press prediction method

7. Conclusions
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki & Press prediction method

Conclusions

Voyager 2 Interstellar Mission

- **Voyager 2** is flying now at 15.6km/s, 104.7 AU from Earth, in the **Heliosheath**, the outermost layer of the heliosphere where the solar wind is slowed by the pressure of interstellar gas
- **Termination Shock** was passed on Sep 5, 2007

source: M. Opher et al.

A turbulence hypothesis for the magnetic field in the **Heliosheath**

"Is the magnetic field in the Heliosheath laminar or a turbulent sea of bubbles?"

source: M. Opher et al.

source: http://voyager.jpl.nasa.gov
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)
Spectral analysis: methodology and validation
Spectral analysis: synthetic turbulence
Spectral analysis: V2 velocity and mag. field data
Rybicki & Press prediction method

Conclusions
L.L. Orionis colliding with the Orion Nebula. Hubble Space Telescope, February 1995
(Credit: NASA, The Hubble Heritage Team (STScI/AURA))
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)
Spectral analysis: methodology and validation
Spectral analysis: synthetic turbulence
Spectral analysis: V2 velocity and mag. field data
Rybicki & Press prediction method

Year 1979: V and B data

Velocity and magnetic field data from V2, period 1979 (DOY 1–180). RTN heliographic reference frame.
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation
Spectral analysis: synthetic turbulence
Spectral analysis: V2 velocity and mag. field data
Rybicki & Press prediction method

Conclusions

Year 1979: V and B data

V2 normalized data (1979)

Velocity and magnetic field data from V2, period 1979 (DOY 1–180). RTN heliographic reference frame.
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation
Spectral analysis: synthetic turbulence
Spectral analysis: V2 velocity and mag. field data
Rybicki & Press prediction method

Conclusions

Year 1979: V and B data
Year 1979: V and B moments and PDFs

<table>
<thead>
<tr>
<th></th>
<th>µ</th>
<th>σ²</th>
<th>Sk</th>
<th>Ku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vₚ</td>
<td>454</td>
<td>1893</td>
<td>0.43</td>
<td>3.41</td>
</tr>
<tr>
<td>Vₜ</td>
<td>3.21</td>
<td>252.9</td>
<td>-0.99</td>
<td>7.35</td>
</tr>
<tr>
<td>Vₙ</td>
<td>0.51</td>
<td>250.3</td>
<td>-0.36</td>
<td>5.80</td>
</tr>
<tr>
<td>Bₚ</td>
<td>-0.04</td>
<td>0.173</td>
<td>0.53</td>
<td>6.71</td>
</tr>
<tr>
<td>Bₜ</td>
<td>0.06</td>
<td>0.85</td>
<td>-0.72</td>
<td>10.2</td>
</tr>
<tr>
<td>Bₙ</td>
<td>0.10</td>
<td>0.34</td>
<td>-0.24</td>
<td>7.65</td>
</tr>
</tbody>
</table>

units: km/s, nT

<table>
<thead>
<tr>
<th></th>
<th><ni> (cm⁻³)</th>
<th>0.23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><T> (K)</td>
<td>27038</td>
</tr>
<tr>
<td>βₚ</td>
<td>0.225</td>
<td></td>
</tr>
<tr>
<td>Vₐ</td>
<td>47.7</td>
<td></td>
</tr>
<tr>
<td>cₛ</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>f_c₁</td>
<td>1.49·10⁻²</td>
<td></td>
</tr>
<tr>
<td>f_p₁</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>f*</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>rᵢ</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>λ_D</td>
<td>5.5</td>
<td></td>
</tr>
</tbody>
</table>

normalized PDF of V and B – comparison with a Normal distribution. Evidence of anisotropy.
Year 1979: V and B moments and PDFs

PDF of module – comparison with a χ^2 distribution. High intermittency?

- Evidence of high $Ku(>3)$
- Origin of “intermittency”: advected coherent structures (flux tubes, etc), stochastic Alfvénic fluctuations generated at solar corona and “frozen” in the wind?
- Intermittency interests a broad range of scales
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation
Spectral analysis: synthetic turbulence
Spectral analysis: V2 velocity and mag. field data
Rybicki & Press prediction method

Conclusions

Autocorrelations

$$R_{ii}(\tau) = \langle x(t)x(t + \tau) \rangle$$
Cross-correlations tensor: off-diagonal terms

\[R_{ij}(\tau) \equiv \langle x(t)y(t+\tau) \rangle \]
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction

Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki & Press prediction method

Conclusions

Cross-correlations tensor: diagonal terms

Summary:

- Averages are computed on 57970 points for V, and 124080 points for B, spanning the whole 180 days period
- Evidence of a 25 days periodicity. Minimum of solar activity in 1979
- High cross-correlation $V_R B_R \rightarrow$ not in-phase
- High cross-correlation $V_R B_T \rightarrow$ not in-phase
- Low Alfvénic one-point correlation (this is often the case in the slow-wind periods)
Data reconstruction techniques

V2 velocity and magnetic field data are discontinuous and irregularly spaced. In the whole year 1979 there is 45% of missing velocity data. These values are about 97% in 2012. To perform an accurate spectral analysis on these kind of data sets, a reconstruction technique may be mandatory. In the following, the effect of two interpolation/recovery methodologies on averaged turbulent spectra will be discussed.

- Linear interpolation
- Maximum likelihood reconstruction and realizations constrained by data

To test the effects of averaging, interpolating and windowing techniques, two 1D sequences of synthetic turbulence data have been generated from imposed spectral properties:

- **Synt 1** → $E_{3D}(n/n_0) = \frac{(n/n_0)^\beta}{(n/n_0)^{\alpha+\beta}}$

- **Synt 2** → $E_{3D}(n/n_0) = \frac{(n/n_0)^\beta}{(n/n_0)^{\alpha+\beta}} \left[1 - \exp\left(\frac{n-n_{tot}}{\gamma} + \epsilon\right) \right]$

$\beta = 2, \alpha = 5/3, n_0 = 11, \gamma = 10^4, \epsilon = 10^{-1}$

Synt 1 mimics the Kolmogorov inertial range of fluid turbulence, **Synt 2** mimics both the inertial and the dissipative part of the spectrum.

- Synthetic data are scaled on a 180 days time grid ($\Delta t = 100$ s, $n_{tot} = 155520$)

- The same gaps of V2 velocity data are projected on these sequences

- Spectral analysis is carried out.
Effect of interpolation on Synt 1 data

\[L_s = \text{length of reconstructed segments used to compute spectra}; \]
\[L_g = \text{maximum length of filled gaps} \]

\[f (\text{Hz}) \]
\[V^2 (\text{Km}^2/s^2/\text{Hz}) \]

Introduction

Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki & Press prediction method

Conclusions
Effect of interpolation on **Synt 2** data

- Effect of segmentation: increase in slope of about 5% in the inertial range.
- Effect of linear interpolation: function of L_g (length of “filled” gaps). This interpolation transfers energy to the low frequencies, resulting in an increase (about 6%) in the slope, especially in the high-frequency range ($f > 10^{-3}\text{Hz}$).
Effect of interpolation on Synt 2 data

- Effect of windowing: the Hann window function allows to eliminate spurious energy due to discontinuities ($\approx 1/f$) at the boundary of each segment. The effect is minimal at low wavenumbers. In the high-frequency range, on the one hand a significant increase (up to 23%) of the slope is found to be a function of L_g, on the other hand any change in slope of the real spectrum can be followed. Energy correction factor for Hann: 1.63^2

- Without windowing, the segmentation error doesn’t allow to represent the correct slope, in the general case (see the analysis on Synt 2 data). These cases can be recognized by a flattening in the high-frequency range of the spectrum. Averaging long segments helps.
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki & Press prediction method

Conclusions

V2 velocity spectra at 5 AU (pre-Jupiter)
Introduction

Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation

Spectral analysis: V2 velocity and mag. field data

Rybicki & Press prediction method

Conclusions

V2 velocity spectra at 5 AU (pre-Jupiter)

- **V2 velocity data**
 - 1979, DOY 1-180
 - α: -1.56
 - α: -1.49
 - α: -1.60
 - α: -1.51

- **V2 kinetic energy**
 - 1979, DOY 1-180
 - α: -1.60
 - α: -1.54
 - α: -1.56
 - α: -1.50

V2 velocity data

1. **V_R (Km²/s²/Hz)**
 - α: -1.56
 - α: -1.49
 - α: -1.60
 - α: -1.51
 - no recov, $L_s = 3 - 4$ hrs
 - no recov, $L_s = 3 - 4$ hrs, Hann
 - lin. recov, $L_g = 0.5$ hrs, $L_s = 12$ hrs
 - lin. recov, $L_g = 0.5$ hrs, $L_s = 12$ hrs, Hann

2. **V_N (Km²/s²/Hz)**
 - α: -1.60
 - α: -1.54
 - α: -1.52
 - α: -1.49
 - 2.5×10^{-3} Hz

3. **E (Km²/s²/Hz)**
 - α: -1.60
 - α: -1.54
 - α: -1.56
 - α: -1.50

Legend
- no recov, $L_s = 3 - 4$ hrs
- no recov, $L_s = 3 - 4$ hrs, Hann
- lin. recov, $L_g = 0.5$ hrs, $L_s = 12$ hrs
- lin. recov, $L_g = 0.5$ hrs, $L_s = 12$ hrs, Hann
V2 mag. field spectra at 5 AU (pre-Jupiter)

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation
Spectral analysis: synthetic turbulence
Spectral analysis: V2 velocity and mag. field data
Rybicki & Press prediction method

Conclusions
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction
Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki & Press prediction method

Conclusions
V2 spectra at 5 AU (pre-Jupiter)

Velocity:

- The observed frequency range constitute the inertial range
- All computed exponents \((10^{-4} < f < 2 \cdot 10^{-3} \text{ Hz})\) are flatter than the Kolmogorov one:
 \[\alpha = -1.53 \pm 0.07 \]
- Computed slopes may be slightly overestimated
- A peak is located at \(f = 0.0026 \text{ Hz}\) for T and N components: is it physical or instrumentation-related? (no relation with \(f_{ci}, f_{pi}, f^*\))

Magnetic field:

- Computed exponents \((10^{-4} < f < 2 \cdot 10^{-3})\) higher lower than the velocity ones:
 \[\alpha = -1.81 \pm 0.09 \]
- Observed steepening for \(f > 3 \cdot 10^{-3} \text{ Hz}\) should not be linked to interpolation issues: the situation recalls that of Synt 2 case, blue (no recovery) and violet (small gaps filled) give the same result.
- Anisotropy is higher with respect to the velocity field
G.B. Rybicki & W.H. Press prediction

• Minimum variance prediction (interpolation):
 \[y = s + n \] irreg. spaced vector data with errors \(n \)
 \[s^* = \sum_{i=1}^{M} d_i y_i + x_\ast \] \(s^* \) = true value at a particular point
 \[\hat{s}^* = S^T [S + N]^{-1} y \] \(\hat{s}^* \) = min. variance estimate for \(s^* \)

Assuming stationary process:
 \[S_{ij} = \langle s_i s_j \rangle = f(t_i - t_j) \] is the correlation matrix, estimated from data
 \[N_{ii} = \langle n_i^2 \rangle \] is the errors diagonal matrix \(n_i \to \infty \) in “new” points

The min. variance estimation is not, however, a typical realization of the underlying process.

• Minimum variance prediction + Gaussian process

To obtain a typical realization, a Gaussian process is added to the min. var. estimate:
 \[s_\ast = u_\ast + \hat{s}_\ast \]

If realizations constrained to data are desired:
 \[u = V diag(\lambda_1^{1/2}, ..., \lambda_M^{1/2}) r \] where
 \[\lambda_i = eig(Q), \quad Q = [S^{-1} + N^{-1}]^{-1}, \quad r = rand(\mu = 0, \sigma^2 = 1) \]
Turbulence in the solar wind, spectra from Voyager 2 data

Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki & Press prediction method

Conclusions
Final considerations and future development

- **V2 data**: it is possible to obtain spectra from incomplete data (at least at 5 AU!)
- **velocity spectra** support the MHD cascade model (Iroshnikov–Kraichnan, -3/2 exponent): -1.53 ± 0.07 exponent
- **magnetic field spectra** much steeper than velocity ones (-1.81 ± 0.09)
- peak at $f = 2.6 \cdot 10^{-3}$ Hz in V_T and V_N spectra only: a feature of solar wind structure or an instrumentation problem? (note: Larmor frequency one order of magnitude higher)
- **Future work**:
 - comparison with V1 data (same exponents and peaks?)
 - analysis of the much challenging *Heliosheath* data (V2: 2007-2013, 97% of voids in data; switch to to *compress sensing* reconstruction method from telecommunication engineering.