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Computational Complexity

An obvious question in computer science is the following:

How much does it cost to solve a given problem?

This is the topic of computational complexity, and it translates in two
main questions:

© How long will a program run (until completion)?
@ How much memory will a program need to be able to run?

Accordingly we talk of time and space complexity.
Tipically, we consider various instances of a class of problems, each
instance having a size; as an example, consider computing

z=[1,2,3]+[4,5,6];

which is a specific instance of the problem of summing two vectors of size
3, which in turn is a special case of the general problem of computing the
sum of two vectors of arbitrary size.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2012-2013 2 /39



Computational Complexity

To compute how long a program will run we need to

Figure out all the operations that will be executed by the
program given a problem instance, and how long each of them
will take

In practice, when doing estimates, we often:

@ Select and count only a subset of operations (that we consider
relevant);

@ Assume all such operations take the same amount of time;

These assumptions are only a first-order (sometimes rather crude)
approximation, but they are sufficient for the purposes of this course.
They also imply we are only examining the algorithm (i.e. the logical
sequence of operations), while ignoring such details as the particular
processor, interpreter, program etc.

In many cases we will count arithmetic operations on floating-point data
(unless noted otherwise).
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Computational Complexity

We will use an asymptotic notation:

Given an algorithm to solve a problem we will define its
running time T(n) to be O(f(n)) if there are constants ¢ and ng
such that

T(n) < c-f(n), for all n > ng

and the bound is valid for all problem instances of size n

Note that the actual running time of an algorithm is not necessarily the
same for all instances of size n: we have implicitly defined above the worst
case complexity by asking the upper bound to be valid for all instances.
We may also define an average case complexity over all instances with the
same size n.

As an example: summing two n-vectors always takes n arithmetic
operations, but sorting an n-vector depends on the contents.
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Computational Complexity

Special cases:

° ): an algorithm taking constant time, independently of size;

@ O(log(n)): a logarithmic algorithm;

o1
O(
e O(n): a linear algorithm;
e O(n*): a polynomial algorithm;
e O(a"): an exponential algorithm.
Polynomial algorithms are considered tractable.
By and large, we should prefer algorithms with a better (i.e. lower)
asymptotic bound: An O(n?) algorithm will eventually overtake an O(n?)
algorithm, even if the leading coefficient is larger.
Note: we are always looking for tight bounds.
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Computational Complexity

O(n)  O(nlog(n)) o(r?) o(n*) o(2")
1.0000e4+00 0.0000e+00 1.0000e+00 1.0000e+00 2.0000e+00
2.0000e+00 4.0000e+00 4.0000e+00 8.0000e+00 4.0000e+00
4.0000e+00 1.6000e+01 1.6000e+01  6.4000e+01 1.6000e+01

8 8.0000e+00 4.8000e+01 6.4000e+01 5.1200e+02 2.5600e+02
16 1.6000e+01 1.2800e+02 2.5600e+02 4.0960e+03 6.5536e+04
32  3.2000e+01 3.2000e+02 1.0240e+03 3.2768e+04 4.2950e+09
64 6.4000e+01 7.6800e+02 4.0960e+03 2.6214e+05 1.8447e+19

128 1.2800e+02 1.7920e+03 1.6384e+04 2.0972e+06 3.4028e+38
256  2.5600e+02 4.0960e+03 6.5536e+04 1.6777e+07 1.1579e+77
512 5.1200e+02 9.2160e+03 2.6214e+05 1.3422e4+08  1.3408e+154

AN R3S

1024  1.0240e+03  2.0480e+04  1.0486e+4-06 1.0737e+09 Inf
2048  2.0480e+03  4.5056e+04  4.1943e+06  8.5899e+-09 Inf
4096 4.0960e+03 9.8304e+04 1.6777e4+07 6.8719e+10 Inf
8192  8.1920e+03  2.1299e+05 6.7109e+07  5.4976e+11 Inf
16384  1.6384e+04 4.5875e+05 2.6844e+08  4.3980e+-12 Inf
32768  3.2768e+04  9.8304e+05 1.0737e4+09 3.5184e+13 Inf
65536  6.5536e+04 2.0972e+06 4.2950e+09 2.8147e+14 Inf
131072  1.3107e+05 4.4564e+06 1.7180e+10 2.2518e+15 Inf
262144  2.6214e+05 9.4372e+06 6.8719e+10 1.8014e+16 Inf
524288  5.2429e+4-05 1.9923e+07 2.7488e+11  1.4412e+17 Inf
1048576  1.0486e+06  4.1943e+07 1.0995e+12  1.1529e+18 Inf
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Computational Complexity

An example: the Discrete Fourier Transform (DFT)
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As defined it costs O(N?); in 1965 Cooley and Tukey discovered an
O(N log(N)) algorithm called the Fast Fourier Transform (FFT).
Things that would NOT exist without the FFT:

e CD;

o JPEG;

DVD;

Digital TV,

Cell phones;

Digital controls (ABS, ESP, Common-rail injection);
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Computational Complexity

A few caveats:

o If we are handling small problem instances, maybe the O(n®)
algorithm is better: 5n3 < 100n? for all n less than 20; some
“optimal” algorithms are good only on astronomically large inputs,
and are thus useless in practice;

o If a program is only going to be used once or twice, the time to write
it becomes important: if the slow algorithm is easier to code, it may
be better;

@ In some cases the fastest algorithm takes too much space;

@ In some cases an algorithm may be the best in the average case and
at the same time very bad in the worst case (e.g. quicksort).

And finally: Never try to improve a program without actually knowing
(and measuring) its performance

Premature optimization is the root of all evil D. Knuth
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Computational Complexity

How to compute an instruction count:

Simple scalar statements have a simple O(1) cost;
The cost of a sequence is the sum of the individual costs;

The cost of a loop is the sum over all iterations of the cost of each
iteration, possibly including the cost to test for termination; often
(but not always) the cost per iteration is constant;

Array statements have a cost that can be understood by expanding
them into equivalent loops;

A conditional statement has a worst-case cost that is the largest of
the if and else parts; to get the average cost we need to multiply
the two branches by the probability that each is taken; all this plus
the cost of the branching condition.

These simple rules can get us very far, but the devil (as usual) is in the
details.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2012-2013 9 /39



Computational Complexity

Statements involving scalar quantities.

a = 2.5; % 0 or 1: Cost of assignment is often ignored;
b = axa+1; % Here we have 2 floating point operations;
c =b"3; % b"3 is bxbxb, so again 2 operations;

for k=nl1:n2 % This is executed (n2—nl+1) times
c=a+b % Cost here is 1 independent of K

end % total cost: 1x(n2—nl+1)
if (mod(k,2) = 0) % If K is a random integer 50% prob.
c=ax*xb+c; % worst case is IF branch of cost 2
else % average case costs 1.5
b=b+1; % plus 2 for evaluating (MOD()==0)
end
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Computational Complexity

Vector (scaled) sums of size n: ¢ = a + alphax*b;

for i=1:n
c(i) = a(i) + alphaxb(i);
end

Cost:

2"22:22":1 =2n
i=1 i=1
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Computational Complexity

Scalar product size n: ¢ = x*y;

c=20
for i=1:n
¢ = ctx(i)xy(i);
end
Cost: . .
> 2=2>"1=2n
i=1 i=1
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Computational Complexity

Matrix-vector products (matrix m x n): y = y + A*x;

for i=1:m
for j=1:n
c(i) =c(i) + A(i,j)*xx(j);
end
end
COSt m n m n m m
22222221:Z2n:2n21:2mn
i=1 j=1 i=1 j=1 i=1 i=1
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Computational Complexity

Matrix-matrix products (matrix m x k x n): C = C + AxB;

for i=1:m
for j=1:n
for p=1:k
C(ij) =C(i,j) +A(i.p)«B(p.j);
end
end
end

Cost:
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Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:
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Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:
n=size(L,1);
for i=1:n
x(i) =b(i) —
x(i) =x(i) /

end

L(i,1:i—1)xx(1:i—-1);
L(i i)

If the diagonal is unitary, the division steps can be skipped. The total

number of operations executed is &~ n?.
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Triangular linear systems

What is the operation count?

@ At each loop iteration i = 1...n, we have a dot product of size i — 1
at step 4

@ A dot product of size k costs 2k operations;
@ At each loop iteration we have a division;
Note that each iteration has a different cost! Therefore:

n

opant = (2(i—1)+1) = O_1)+20> (i-1))
i=1 i=1 i=1
(n—=1)n _ 2

=n+22i = n—i-ZT—n
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Computational Complexity

Useful tricks:

S
—~
S
+
—
~
S
N
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Searching & Sorting

Searching and Sorting are essential problems in computer science.

We have a collection of items (records) R; each one with a
key Ki, i=1,...,n, and we are given a key K: we need to find
the index j of a record (if any) with K; = K.

This formulation of the problem lends immediately to the sequential search
algorithm where we only need to check for equality K; = K:

function res=search (key,v)
% Sequential search

k=1;
found=false;
res=—1;

n=length (v);
while ((k<=n)&&("found))
if (v(k)==key)
found = true;
res=k;
end
k=k—+1;
end
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Searching & Sorting

What is the runtime of sequential search? We must count the number of
iterations through the loop.

@ If the search is successful, we have performed exactly res iterations
through the loop; if we don't know any better, we may assume a
uniform distribution, which means on average res = n/2;

@ If the search is unsuccessful, we have performed n iterations.

So, this algorithm is O(n).
Can we do any better?
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Searching & Sorting

Suppose that the keys K admit an order relation:

© Each pair of keys satisfies Kj, K; satisfies exactly one of three

relations (trichotomy): K; < Kj or K; = Kj or K; < Kj;

Q If Ki < Kq and K4 < K] then K; < Kj (transitivity).
Now we can ask: what happens if you happen to have a sorted set of
records:

I <j=Ki <K

So:

Compare the search key K with the item in the middle: if the
key is smaller, then an equal item can only be in the first
half-vector, if it's larger it can only be in the second half-vector.
An if it's equal you're done.

(by application of transitivity).
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Searching & Sorting

function res=bsearch(k,v)

% Binary search

found=false;

res=—1;

n=length (v);

first=1; last=n

while ((first<=last)&&("found))

m = floor ((first+last)/2)
if (v(m==key)

found = true;
res =m

elseif (key < v(m))
last = m-1

elseif (key > v(m))

first = mt1
end

end
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Searching & Sorting

What is runtime of binary search?

@ At each step we are searching a subvector v(first:last), of size
last — first + 1;

@ In the worst case, we stop when first > last, i.e. empty vector;
@ As we move from a step to the next, the length of the vector halves,
LN
n———= —...
2 22

In other words: we are searching for the smallest / such that

n
E S 17
or

i > log,(n).

Hence binary search is O(log(n)). (But beware of argument copy!).
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Searching & Sorting

We see it's beneficial to have items sorted. How do we do it? First idea:
insertion sorting. Take one item of the input at a time and put it in the
right place in the output.
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Searching & Sorting

We see it's beneficial to have items sorted. How do we do it? First idea:
insertion sorting. Take one item of the input at a time and put it in the
right place in the output.

function vs=insert(v)

if ("((size(v,1)==1)||(size(v,2)==1)))
error ("V is not a vector”);

end

trans=(size(v,2)"=1);

if (trans)

end

vs =[];

for x=v
i=lsrch(x,vs);
vs=[vs(1:i), x, vs(i+1l:length(vs))];

end

if (trans)
vs = vs ';

end

Hopelessly O(n?).
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Searching & Sorting

We see it's beneficial to have items sorted. How do we do it? First idea:
insertion sorting.

function vs=insertl (v)

if ("((size(v,1)==1)]|(size(v,2)==1)))
error("V is not a vector”);
end

n=length (v);
for j=2:n
i=j —1;
xch=true;
while ((i >= 1) && (xch))
xch= (v(i) > v(i+1))
if (xch)
t=v(i);
v(i)=v(i+1);
v(i+l)=t;
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Searching & Sorting

Second strategy: merge sort.

Suppose you have two sorted sequences; then it is easy to see that a very
simple pass looking at the first elements at each step will be enough to
build a single sorted sequence containing all their elements. This is called
merge

Then we have the mergesort algorithm:

@ If the vector is of length 1 it’s already sorted;

@ Otherwise, call recursively on the first half, then on the second half,
then merge the two sorted subvectors.
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Searching & Sorting

Main program

function b = mergesort(a)
% Listing 16—5 Merge sort
% This function sorts a column array,
if (“((size(a,1)==1)||(size(a,2)==1)))
error(”"a is not a vector”);

end

b=a;

sz = length(b);
if sz > 1

szb2 = floor(sz / 2);
first = mergesort(b(1l : szb2));
second = mergesort(b(szb241 : sz));

b = merge(first , second);

end

if ((size(a,2)==1)&&(size(b,2)>1))
b=b"';

end

end

Computing Fundamentals
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Searching & Sorting

Second strategy: merge sort.

function b = merge(first , second)

% Merges two sorted arrays
il =1; i2 = 1; out = 1;
b=first ;

% as long as neither il nor i2 past the end,
% move the smaller element into a
while (il <= length(first)) && (i2 <= length(second))
if It(first(il), second(i2))
b(out) = first(il); il = il + 1;
else
b(out) = second(i2); i2 = i2 + 1;
end
out = out + 1;
end
% copy any remaining entries of the first array
while il <= length(first)
b(out) = first(il); il =il + 1; out = out + 1;
end
% copy any remaining entries of the second array
while i2 <= length(second)
b(out) = second(i2); i2 = i2 + 1; out = out + 1;
end
end
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Searching & Sorting

Third strategy: quicksort

If all the items in the first half are less than all the items in the second half,
then you can sort recursively the two halves and the result will be sorted.
Then we have the quicksort algorithm:

o If the vector is of length 1 it's already sorted;

o Otherwise, partition the vector into two halves such that all items in
the first half are less than those in the second, then call recursively on
both halves.

This is also called partition-exchange sorting.
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Searching & Sorting

Third strategy: quicksort

% Listing 16—3 — Quick sort
function a = quicksort(a)
% This function sorts a column array,
% using the quick sort algorithm
if ("((size(a,l)==1)||(size(a,2)==1)))
error(”a is not a vector”);

end
a=quicksorti(a,l,length(a));
end
function a = quicksorti(a, from, to)
if (from < to)
[a p] = partition(a, from, to);
% from,p
% p+1,to
a = quicksorti(a, from, p);

a = quicksorti(a, p+ 1, to);
end
end
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Searching & Sorting

Third strategy: quicksort

function [a lower] = partition(a, from, to)
% This function partitions a column array

pivot = a(from); i = from — 1; j = to + 1;

while (| <)
i =i+ 1;

while It(a(i), pivot)
i+ 1

end

=71

while gt(a(j), pivot)
i=i-1

end

if (i <j)

temp = a(i); % swap
a(i) = a(j); % a(i) with a(j)
a(j) = temp;
end
end
lower = j;
end
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Computational Complexity

How do we count operations for recursive functions?
Let’s model the behaviour:

Each instance of a recursive function is either a base
instance, with a known cost, or it splits the problem of size n
into a subproblems of size n/b whose solutions will be combined
to build the overall solution
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Computational Complexity

How do we count operations for recursive functions?
Let's model the behaviour:

Each instance of a recursive function is either a base
instance, with a known cost, or it splits the problem of size n
into a subproblems of size n/b whose solutions will be combined
to build the overall solution

In formulae:
1 n=1
T(n) = { aT(p)+n* n>1

The term n® is assumed to measure the cost of splitting the problem and
of combining the solutions of the subproblems.
Note: if we have ¢ - n® we can easily define an auxiliary function U = T /c.
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Computational Complexity

Unroll the recurrence for n = b*:

T(n) = aT<2>+n°‘
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Computational Complexity
Case 1:
a> b%;
in this case )
§:<3Jf:(ﬁ)
fe' a _ !
= b pe — 1
asymptotically this can be approximated by
k . P
a\J a\ktl aca
S(2) < ()52
: bx b b n»
j=0

which gives

hence

T(n) = O(a¥) = O(a°8") = O(n'°®s?)
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Computational Complexity

Case 2:
a < b%;
in this case .
> (3) <5 (3) mex
j=0 j=0
hence

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2012-2013 34 /39



Computational Complexity

Case 3:

in this case we have

hence
T(n) = O(n“k) = O(n*log, n).
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Computational Complexity

Example: merge-sort and quicksort. Both algorithms can be modeled by

1 n=1
T("):{ 2T(2)+n n>1

Hence behaviour is
T(n) = O(nlog(n)).

Note: it is essential to split into equal halves; this is guaranteed for
merge-sort, but only statistically true for quicksort. So: the average
behaviour of quicksort is better, but the worst case behaviour is bad,
whereas mergesort is always good.
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Computational Complexity

Example: Matrix multiplication.
We know that C = AB takes 2n3 operations, right?
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Computational Complexity

Example: Matrix multiplication.
We know that C = AB takes 2n3 operations, right?
Well, consider the problem of multiplying two 2 x 2 matrices

< i G ) _ < Al A ) ( Bi1 B >
1 G Axi A Bx1 By

The standard way to compute the product:

Gi1 = AubBu+ABx
A11B12 + A12B2»
A21B11 + A2 B2y
Cx = AxBix+A»nBx»

o0
=N
o

8 multiplications and 4 additions.
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Computational Complexity

Strassen (1968) discovered a formula later improved by Winograd

u
v
w
C11
Ci2
(1
C2

(A21 — A11)(B21 — B22)

(A21 + A22)(B21 — Bi1)

A11B11 + (A1 + Az — A1) (B + B2 — Br2)
A11B11 + A12B21

w+ v+ (A1 + A1z — A1 — A22) B2

w + v + Ax(B21 + Bia — B — B2))
u+v-+w

These are 7 multiplications and 15 additions; commutativity is not used,
so the terms can be submatrices.
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Computational Complexity

Hence matrix multiplication costs

1 n=1
T(n)—{ 7T(5)+15%n* n>1

but
7>4=2
hence
T(n) — O(nlog2(7)) — O(n2.8074)

Current record is O(n?37°).
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