
Computing Fundamentals

Salvatore Filippone

salvatore.filippone@uniroma2.it

2013–2014

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 1 / 18

Octave basics

Octave/Matlab:

f p r i n t f (’ H e l l o w o r l d \n ’) ;

Octave entities:

1 Numeric constants;

2 Variables;

3 Operators;

A variable is fundamentally a tag associated with a memory area: it
contains data. A variable name is a sequence of letters and numbers
starting with a letter.
Assignment operator:

one =1;

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 2 / 18

Octave basics

DataType: A set of entities and the operations defined on them.

Examples of primitive data types:

Booleans (logical);

Integers;

Floating-point;

Complex.

In Octave/Matlab: distinction among the numerics is blurred.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 3 / 18

Octave basics

Syntactic elements: arithmetic operators

+ Addition;

- Subtraction;

* Multiplication;

/ Division;

^ Exponentiation;

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 4 / 18

Octave basics

Syntactic elements: relational operators

< Less than;

<= Less than or equal to;

> Greater than;

>= Greater than or equal to;

== Equal;

~= Not equal; in Octave (but not in Matlab) also !=

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 5 / 18

Octave basics

Syntactic elements: logical operators

~, not NOT;

&, &&, and AND;

|, ||, or OR;

xor Exclusive OR;

false

true

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 6 / 18

Octave basics

SCRIPTS: Sequences of instructions stored in a file, so that they can be
retrieved and executed

Examples.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 7 / 18

Octave basics

Syntactic elements: functions

sqrt Square root;

exp Exponential;

log, log2, log10 Logarithm;

sin, cos, sinh, cosh, tan, asin, acos, atan Trigonometric
functions

airy, besselj, beta, erf, gamma, legendre Special functions

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 8 / 18

Computer Arithmetic

Integers are represented with 8, 16, 32 or 64 bits.
Integer operators work “as expected”, except that the operands must be
of the same type.
In Octave/Matlab most operations implicitly convert to floating-point.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 9 / 18

Computer Arithmetic

Since computers represent numbers with finite strings of digits (bits), we
will never have “real” numbers; what we can aim for is a (finite) subset of
the rationals.
Therefore any “real” number x will be represented by an approximation

x̂ = round(x) = x(1 + δ).

What we can hope is to somehow control the relative error |δ| ≤ ε

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 10 / 18

Floating-Point Arithmetic

Floating-point numbers: a subset of the rational numbers with the form
(s, e, f) where s is the sign, e is the exponent and f is the fraction part, or
mantissa; we also have parameters β, t emin and emax such that

(s, e, f) = s × f × βe−t = ±βe
(
d1
β

+
d2
β2

+ . . .
dt
βt

)
with f represented on t figures.

.d1d2 . . . dt

Normalized numbers: m ≥ βt−1, i.e. d1 6= 0; we also add explicitly the
zero (which would be excluded).

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 11 / 18

Floating-Point Arithmetic

Floating-point numbers: a subset of the rational numbers with the form
(s, e, f) where s is the sign, e is the exponent and f is the fraction part, or
mantissa; we also have parameters β, t emin and emax such that

(s, e, f) = s × f × βe−t = ±βe
(
d1
β

+
d2
β2

+ . . .
dt
βt

)
with f represented on t figures.

.d1d2 . . . dt

Normalized numbers: m ≥ βt−1, i.e. d1 6= 0; we also add explicitly the
zero (which would be excluded).

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 11 / 18

Floating-Point Arithmetic

As an example: with β = 2, t = 3, emin = −1, emax = 3 we can represent
the following set of numbers:

0, 0.25, 0.3125, 0.3750, 0.4375, 0.5, 0.625, 0.750, 0.875

1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0

Note: the relative error decreases within each octave, but the minimum
and maximum are the same over all octaves!

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 12 / 18

Floating-Point Arithmetic

If β = 2 then
d0 6= 0⇒ d0 = 1,

therefore the first bit can be assumed (“phantom”).

To get a uniform spacing we introduce the so-called “denormalized”
numbers, i.e. numbers with e = emin, d0 = 0; in our example these are

0.0625, 0.125, 0.1875,

and they fill the “hole” around zero as follows:

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 13 / 18

Floating-Point Arithmetic

If β = 2 then
d0 6= 0⇒ d0 = 1,

therefore the first bit can be assumed (“phantom”).
To get a uniform spacing we introduce the so-called “denormalized”
numbers, i.e. numbers with e = emin, d0 = 0; in our example these are

0.0625, 0.125, 0.1875,

and they fill the “hole” around zero as follows:

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 13 / 18

Floating-Point Arithmetic IEEE 754

Single precision β = 2, t = 23 + 1 (“phantom” bit is 1 if normalized, 0
otherwise), emin = −127, emax = 127, u = 6.0× 10−8, range
10±38

Double precision β = 2, t = 52 + 1 (“phantom” bit is 1 if normalized, 0
otherwise), emin = −1023, emax = 1023, u = 1.1× 10−16,
range 10±308

Extended precision β = 2, t = 63 + 1 (“phantom” bit is 1 if normalized, 0
otherwise), emin = −16383, emax = 16383, u = 5.4× 10−20

Quad precision β = 2, t = 112 + 1 (“phantom” bit is 1 if normalized, 0
otherwise), emin = −16383, emax = 16383, u = 9.6× 10−35

Octave/Matlab use double precision numbers.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 14 / 18

Floating-Point Arithmetic IEEE 754

When e = 2047, the actual exponent is 2047− 1023 = 1024; with f = 0
this is understood to represent infinity.
When f 6= 0, it is a NaN (Not a Number)

1/0 =∞
−1/0 = −∞
0/0 =∞−∞ =∞/∞ = 0×∞ =

√
−1 = NaN

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 15 / 18

Floating-Point Arithmetic IEEE 754

In general a real number a is not exactly representable.
If fl(a) is the best floating point approximation to a, we define the
machine precision through the relation

fl(a) = a(1 + ε), |ε| ≤ εM for all a.

The quantity εM is closely related to the number of significant digits, but
has nothing to do with the smallest represented number.
In double precision IEEE arithmetic we have ε ≈ 10−16 whereas the
smallest normalized numer is approx. 10−308, and the smallest
unnormalized number is approx. 10−324.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 16 / 18

Floating-Point Arithmetic IEEE 754

Are there any numbers exactly represented in our system?

They must have a finite expansion:

x =
p

q
=

(
d1
β

+
d2
β2

+ · · · dt
βt

)
Thus, there exists k such that

x × βk integer

Therefore we must have
βk

q
integer

but this means that the denominator q only contains prime factors which
are also prime factors of β.
Conclusion: 0.110 is NOT exactly representable in binary arithmetic!!!!

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 17 / 18

Floating-Point Arithmetic IEEE 754

Are there any numbers exactly represented in our system?
They must have a finite expansion:

x =
p

q
=

(
d1
β

+
d2
β2

+ · · · dt
βt

)

Thus, there exists k such that

x × βk integer

Therefore we must have
βk

q
integer

but this means that the denominator q only contains prime factors which
are also prime factors of β.
Conclusion: 0.110 is NOT exactly representable in binary arithmetic!!!!

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 17 / 18

Floating-Point Arithmetic IEEE 754

Are there any numbers exactly represented in our system?
They must have a finite expansion:

x =
p

q
=

(
d1
β

+
d2
β2

+ · · · dt
βt

)
Thus, there exists k such that

x × βk integer

Therefore we must have
βk

q
integer

but this means that the denominator q only contains prime factors which
are also prime factors of β.
Conclusion: 0.110 is NOT exactly representable in binary arithmetic!!!!

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 17 / 18

Floating-Point Arithmetic IEEE 754

Are there any numbers exactly represented in our system?
They must have a finite expansion:

x =
p

q
=

(
d1
β

+
d2
β2

+ · · · dt
βt

)
Thus, there exists k such that

x × βk integer

Therefore we must have
βk

q
integer

but this means that the denominator q only contains prime factors which
are also prime factors of β.
Conclusion: 0.110 is NOT exactly representable in binary arithmetic!!!!

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 17 / 18

Floating-Point Arithmetic IEEE 754

Are there any numbers exactly represented in our system?
They must have a finite expansion:

x =
p

q
=

(
d1
β

+
d2
β2

+ · · · dt
βt

)
Thus, there exists k such that

x × βk integer

Therefore we must have
βk

q
integer

but this means that the denominator q only contains prime factors which
are also prime factors of β.

Conclusion: 0.110 is NOT exactly representable in binary arithmetic!!!!

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 17 / 18

Floating-Point Arithmetic IEEE 754

Are there any numbers exactly represented in our system?
They must have a finite expansion:

x =
p

q
=

(
d1
β

+
d2
β2

+ · · · dt
βt

)
Thus, there exists k such that

x × βk integer

Therefore we must have
βk

q
integer

but this means that the denominator q only contains prime factors which
are also prime factors of β.
Conclusion: 0.110 is NOT exactly representable in binary arithmetic!!!!

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 17 / 18

Properties of operations in floating-point arithmetic

In the analysis of algorithms we will assume that the result of any
individual arithmetic operation is the rounding of the exact result:

u ⊕ v = round(u + v);

This is a requirement of IEEE 754.
Floating-point operations are:

Commutative (where it makes sense)

u ⊕ v = v ⊕ u

Non associative
(x ⊕ y)⊕ z 6= x ⊕ (y ⊕ z)

Non distributive
x ⊗ (y ⊕ z) 6= (x ⊗ y)⊕ (x ⊗ z)

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 18 / 18

