
Computing Fundamentals

Salvatore Filippone

salvatore.filippone@uniroma2.it

2013–2014

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 1 / 13



The (activation) Stack

A stack is a fundamental data structure holding a list of items, on which
two operations are defined:

PUSH: add a new item to the stack;

POP: Take out the most recently added item;

Check: if the stack is empty;

This is the basis for the management of memory needed by functions:

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 2 / 13



Functions and Memory

A function file defines the interface and behaviour of a function.

An instance of a function is the invocation of a function
together with the data it will act upon

Each invocation gets a stack frame which is filled with the input
arguments, and hosts the local variables;

If the function invokes an auxiliary one, another stack frame is
allocated;

In particular, a function may call itself: such a function is called
recursive.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 3 / 13



Recursion

Recursion is the general technique in which a function is
defined in terms of (another instance of) itself

It is a computing counterpart to the principle of mathematical induction:

If a property is true of the number 0, and if the truth for
number n implies the truth for number n + 1, then the property
is true for all natural numbers.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 4 / 13



Recursion

Basic rules:

There must be a base for which the solution to the problem is known
directly;

The problem must be decomposed into versions of itself with different
arguments;

The arguments of the recursive calls should change in a way that
makes progress towards the recursion base;

The last condition is especially important: it ensures termination of the
recursive call chain.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 5 / 13



Recursion

First (classical) example: the factorial

funct ion n f a c t=f a c t o r i a l (m)
i f m==0

n f a c t =1;
e l s e

n f a c t=m∗ f a c t o r i a l (m−1);
end

end

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 6 / 13



Fibonacci

Famous problem by Leonardo Pisano defined by the following equation:

Fib(n) = Fib(n − 1) + Fib(n − 2)

Coding:

funct ion f n=f i b o n a c c i ( n )
i f n==0

f n =0;
e l s e i f n==1

f n =1;
e l s e

f n=f i b o n a c c i ( n−1)+ f i b o n a c c i ( n−2);
end

end

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 7 / 13



If anything can go wrong...

Recursion is a very powerful and elegant idea, but:

Sometimes very significant memory occupancy;

If you get the termination conditions wrong you’re in (deep) trouble;

Performance may be an issue;

What is wrong with the fibonacci function?

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 8 / 13



Starting a recursion

It is often necessary to do something different on the first invocation of a
recursive function:

Do you trust your user(s)? Bad idea!

Do you check your data on each invocation?

The solution often lies in writing a wrapper function:

An external (user-visible) function that performs any checks
and/or setup necessary, then calls the actual recursive function.

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 9 / 13



Tail recursion

Recursion is powerful, iteration is efficient: how to get the best of both
worlds?

Tail Recursion: The recursive call is the last executable statement in the
function, and the result from the recursive call is the same as
the function result

In this case the interpreter can overlay the new stack frame over the
current one.

Tail recursion gets the best of both worlds; it almost always
needs a wrapper function.

Examples: fibonacci, factorial, bisection

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 10 / 13



Recursion

Variations on the concept of recursion:

Mutual recursion: Two (or more) functions calling each other in a ring: at
least one of them has to have a terminating condition;

Generative recursion: It is necessarily not the case that each step moves
directly towards termnination

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 11 / 13



Exception handling

What do you do when things go wrong?

You may return an error indication (e.g. 0: everything went well, not
0: something went wrong): but this uses the function value!

You can set a global variable: but the caller still needs to check for it.
Moreover, what value do you return when things have gone wrong?

The mechanism available in Octave/Matlab:

Throw an exception with error within a try block;

Catch an exception in a catch block

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 12 / 13



Exception handling

t r y
v a l=i f i b o (−19)

c a t c h
disp ( ’ Wrong c a l l to i f i b o ’ )

end

How does it work?

When the exception is thrown, execution is immediately halted;

The stack frames are travelled backwards (and freed) until a catch

block is found;

The catch block is executed, or the error is displayed at the top level

(salvatore.filippone@uniroma2.it) Computing Fundamentals 2013–2014 13 / 13


