
Computing Fundamentals
Introduction to the course

Salvatore Filippone

salvatore.filippone@uniroma2.it

http://people.uniroma2.it/salvatore.filippone

2014–2015

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 1 / 47

What is Computer Science?

Computer Science is the Science of Computers

?
Somewhat mistaken; it can be argued that the Science of (building)
Computers is Electronics Engineering. Better definition:

Computer Science is the discipline dealing with
representation, storing, retrieval and processing of information by
automated means

Actually Informatics would be a better name !

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 2 / 47

What is Computer Science?

Computer Science is the Science of Computers ?

Somewhat mistaken; it can be argued that the Science of (building)
Computers is Electronics Engineering. Better definition:

Computer Science is the discipline dealing with
representation, storing, retrieval and processing of information by
automated means

Actually Informatics would be a better name !

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 2 / 47

What is Computer Science?

Computer Science is the Science of Computers ?
Somewhat mistaken; it can be argued that the Science of (building)
Computers is Electronics Engineering.

Better definition:

Computer Science is the discipline dealing with
representation, storing, retrieval and processing of information by
automated means

Actually Informatics would be a better name !

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 2 / 47

What is Computer Science?

Computer Science is the Science of Computers ?
Somewhat mistaken; it can be argued that the Science of (building)
Computers is Electronics Engineering. Better definition:

Computer Science is the discipline dealing with
representation, storing, retrieval and processing of information by
automated means

Actually Informatics would be a better name !

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 2 / 47

History of computing

The Ancestors’ Era:

The Antikythera mechanism

Charles Babbage: the Analytical Engine;

Hermann Hollerith: card collation machine for US census;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 3 / 47

History of computing: Antikythera

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 4 / 47

History of computing: Babbage

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 5 / 47

History of computing: Hollerith

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 6 / 47

History of computing

The Pioneer’s Era

ENIAC, used for army ballistic tables;

Colossus, deciphering Nazi messages;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 7 / 47

History of computing: ENIAC

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 8 / 47

History of computing: Colossus

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 9 / 47

History of computing

The Mainframe Era: Computers become an indispensable business tool:

IBM 360;

Cray 1;

Digital VAX;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 10 / 47

History of computing: IBM 360

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 11 / 47

History of computing: Cray 1

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 12 / 47

History of computing: VAX 11

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 13 / 47

History of computing

The Microprocessor Era:

Intel 8080;

Apple Macintosh;

IBM PC;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 14 / 47

History of computing: Intel 8080

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 15 / 47

History of computing: Apple Macintosh

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 16 / 47

History of computing: IBM PC

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 17 / 47

History of computing

Today and Tomorrow:

Supercomputers;

GPUs;

Mobile computing;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 18 / 47

History of computing: Tianhe-2

National Super Computer Center in Guangzhou, most powerful computer
in the world in Nov. 2014

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 19 / 47

History of computing: Titan

Titan, Oak Ridge National Laboratory: most powerful computer in the
world in Nov. 2012, No. 2 in Nov. 2014

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 20 / 47

History of computing: Piz-Daint

CSCS, Lugano, Switzerland, most powerful computer in Europe Nov. 2014
(No. 6 in the world).

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 21 / 47

History of computing: Fermi

Fermi, CINECA; in Nov. 2012 for the first time in the top 10. (currently
most powerful computer listed is at ENI).

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 22 / 47

History of computing: NVIDIA GTX 285

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 23 / 47

Information: a rigorous definition

The concept of “information” was defined rigorously by Claude Shannon in
1948.

Basic ideas:

Setting: the transmission of a message;

The message is composed of items from an alphabet;

The alphabet has an encoding;

Receiving a message changes a probability estimate;

Independent messages should add their information.

Thus information should be a function of probability (of a symbol):

I (α) = − logb(p(α))

If b = 2 the unit is a “bit”. Entropy: Average information per symbol

H(A) =
∑
α∈A
−p(α) logb(p(α))

Key idea: Representation of data

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 24 / 47

Information: a rigorous definition

The concept of “information” was defined rigorously by Claude Shannon in
1948.Basic ideas:

Setting: the transmission of a message;

The message is composed of items from an alphabet;

The alphabet has an encoding;

Receiving a message changes a probability estimate;

Independent messages should add their information.

Thus information should be a function of probability (of a symbol):

I (α) = − logb(p(α))

If b = 2 the unit is a “bit”. Entropy: Average information per symbol

H(A) =
∑
α∈A
−p(α) logb(p(α))

Key idea: Representation of data

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 24 / 47

Information: a rigorous definition

The concept of “information” was defined rigorously by Claude Shannon in
1948.Basic ideas:

Setting: the transmission of a message;

The message is composed of items from an alphabet;

The alphabet has an encoding;

Receiving a message changes a probability estimate;

Independent messages should add their information.

Thus information should be a function of probability (of a symbol):

I (α) = − logb(p(α))

If b = 2 the unit is a “bit”. Entropy: Average information per symbol

H(A) =
∑
α∈A
−p(α) logb(p(α))

Key idea: Representation of data
(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 24 / 47

Information

An example: the encoding of the Latin alphabet. Econding one letter out
of 26, the bits carried by a letter are:

B(α) = log2(26) ≈ 4.7

so we need at least 5 bits. ASCII encoding uses 7 (out of 8) bits:

65 A 78 N 97 a 110 n
66 B 79 O 98 b 111 o
67 C 80 P 99 c 112 p
68 D 81 Q 100 d 113 q
69 E 82 R 101 e 114 r
70 F 83 S 102 f 115 s
71 G 84 T 103 g 116 t
72 H 85 U 104 h 117 u
73 I 86 V 105 i 118 v
74 J 87 W 106 j 119 w
75 K 88 X 107 k 120 x
76 L 89 Y 108 l 121 y
77 M 90 Z 109 m 122 z

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 25 / 47

Computer Architecture

Organization and interaction of the various components making
up a computer

Nomenclature originally introduced in the 60s (IBM 360)

Basic idea: Von Neumann architecture;

Evolution over time:

“Traditional” systems;
“Pipelined” computers;
Vector CPUs ;
Microprocessors;
RISC (Reduced Instruction Set Computer) CPUs;
SMPs (Symmetric MultiProcessor);
MPPs (Massively Parallel Processor).
Multi-core computers
GPU (Graphical Processing Units) accelerators;

CPU: Central Processing Unit.

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 26 / 47

Von Neumann architecture

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 27 / 47

Von Neumann architecture

Central
to the Von Neumann architecture:

Time is discretized;

Simple operations
are executed inside the CPU;

The list of operations
to be executed is stored in memory;

The data are also in memory;

The instructions of one program can
be the data of another (compilers!).

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 28 / 47

Von Neumann architecture

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 29 / 47

Computer Types

Classification:

Handheld/mobile devices;

Laptops;

Desktop;

Workstations;

Mainframes;

Supercomputers;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 30 / 47

Algorithm

Central to computer science is the notion of algorithm:

A procedure for solving a problem, i.e. producing an answer
given the data, with the following characteristics:

1 Finiteness;
2 Definiteness; (no ambiguities)
3 Input;
4 Output;
5 Effectiveness (can be carried out).

Note: by definition, an algorithm always answers in a finite time.
Otherwise it’s a computational method.

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 31 / 47

Algorithm

Oldest algorithm recorded in history and attributed to an individual is
Euclid’s algorithm.

Given m and n positive integers:

1 Divide m by n and note the remainder r ;

2 if r = 0, output n and stop;

3 Set m← n, n← r and go back to step 1.

This algorithm is the efficient way to compute GCD(m, n).

Exercise: prove that it terminates and works.

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 32 / 47

Algorithm

For any problem (provided it is specified precisely) there will be an

algorithm. Right ?

NO!
Related to Gödel’s incompleteness theorem, we have the Turing’s Halt
theorem:

There exist problems for which no algorithm can possibly be
devised.

To clarify, there can be procedures that solve some problem instances, but
on some instances they will not terminate in finite time. Ironically, one of
the impossible problems is:

Given a student’s programming project, decide if it will stop
on its input or it will go in an endless loop

No algorithm can fully solve this! (But many cases are recognizable)

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 33 / 47

Algorithm

For any problem (provided it is specified precisely) there will be an

algorithm. Right ?
NO!
Related to Gödel’s incompleteness theorem, we have the Turing’s Halt
theorem:

There exist problems for which no algorithm can possibly be
devised.

To clarify, there can be procedures that solve some problem instances, but
on some instances they will not terminate in finite time.

Ironically, one of
the impossible problems is:

Given a student’s programming project, decide if it will stop
on its input or it will go in an endless loop

No algorithm can fully solve this! (But many cases are recognizable)

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 33 / 47

Algorithm

For any problem (provided it is specified precisely) there will be an

algorithm. Right ?
NO!
Related to Gödel’s incompleteness theorem, we have the Turing’s Halt
theorem:

There exist problems for which no algorithm can possibly be
devised.

To clarify, there can be procedures that solve some problem instances, but
on some instances they will not terminate in finite time. Ironically, one of
the impossible problems is:

Given a student’s programming project, decide if it will stop
on its input or it will go in an endless loop

No algorithm can fully solve this! (But many cases are recognizable)

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 33 / 47

Algorithm

Going back to the finiteness property:

An algorithm should be VERY finite, not just finite.
(D. Knuth)

Let us make this precise. Algorithms are characterized by

Time complexity: T (n) is O(f (n)) if we can find f (n), C and n0 such that
on an input of size n the time to completion is

T (n) ≤ C · f (n) for all n > n0

Space complexity: a similar upper bound on the amount of memory
employed

Algorithms are typically considered “tractable” if their complexity is a
polynomial in n (but this may still leave room for improvement)

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 34 / 47

Algorithm

Consider the game of chess; in 1950 Shannon wrote a paper about
implementing a computer program to play. In theory the program can just
look at all possible table configurations (aka positions, and they are finite).
Right ?

1 Average number of legal moves per position: 30;

2 Thus with a move for White followed by a move for Black we have:
103;

3 Average game length: 40 moves;

As a consequences we need to look at

10120

different positions.To put in perspective:

Number of atoms in the universe: 1080

Size of the universe in electron diameters: 1039

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 35 / 47

Algorithm

Consider the game of chess; in 1950 Shannon wrote a paper about
implementing a computer program to play. In theory the program can just
look at all possible table configurations (aka positions, and they are finite).
Right ?

1 Average number of legal moves per position: 30;

2 Thus with a move for White followed by a move for Black we have:
103;

3 Average game length: 40 moves;

As a consequences we need to look at

10120

different positions.

To put in perspective:

Number of atoms in the universe: 1080

Size of the universe in electron diameters: 1039

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 35 / 47

Algorithm

Consider the game of chess; in 1950 Shannon wrote a paper about
implementing a computer program to play. In theory the program can just
look at all possible table configurations (aka positions, and they are finite).
Right ?

1 Average number of legal moves per position: 30;

2 Thus with a move for White followed by a move for Black we have:
103;

3 Average game length: 40 moves;

As a consequences we need to look at

10120

different positions.To put in perspective:

Number of atoms in the universe: 1080

Size of the universe in electron diameters: 1039

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 35 / 47

Algorithm

The Discrete Fourier Transform (of size N): it is an essential tool of
communication technology:

F (k) =
∑

0≤j<N

ωkj
N f (j), ωkj

N = e2πi
jk
N 0 ≤ k < N

This is a (complex) matrix-vector product, so the cost is 8N2,but in 1965
Cooley and Tukey (re)discovered a way to do it in 5N log(N) !

Size DFT FFT
10 800 166

100 80000 3321.93
1000 8e+06 49828.9
5000 4e+08 307193

10000 8e+08 664386
50000 4e+10 3.90241e+06

100000 8e+10 8.30482e+06
500000 4e+12 4.73289e+07

1000000 8e+12 9.96578e+07

Things that would not exist without the FFT include: Satellite
communications, mobile phones, CAT, PET, VOIP, CD, JPEG, MPEG
DVD, DVTB. . .

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 36 / 47

Algorithm

The Discrete Fourier Transform (of size N): it is an essential tool of
communication technology:

F (k) =
∑

0≤j<N

ωkj
N f (j), ωkj

N = e2πi
jk
N 0 ≤ k < N

This is a (complex) matrix-vector product, so the cost is 8N2,

but in 1965
Cooley and Tukey (re)discovered a way to do it in 5N log(N) !

Size DFT FFT
10 800 166

100 80000 3321.93
1000 8e+06 49828.9
5000 4e+08 307193

10000 8e+08 664386
50000 4e+10 3.90241e+06

100000 8e+10 8.30482e+06
500000 4e+12 4.73289e+07

1000000 8e+12 9.96578e+07

Things that would not exist without the FFT include: Satellite
communications, mobile phones, CAT, PET, VOIP, CD, JPEG, MPEG
DVD, DVTB. . .

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 36 / 47

Algorithm

The Discrete Fourier Transform (of size N): it is an essential tool of
communication technology:

F (k) =
∑

0≤j<N

ωkj
N f (j), ωkj

N = e2πi
jk
N 0 ≤ k < N

This is a (complex) matrix-vector product, so the cost is 8N2,but in 1965
Cooley and Tukey (re)discovered a way to do it in 5N log(N) !

Size DFT FFT
10 800 166

100 80000 3321.93
1000 8e+06 49828.9
5000 4e+08 307193

10000 8e+08 664386
50000 4e+10 3.90241e+06

100000 8e+10 8.30482e+06
500000 4e+12 4.73289e+07

1000000 8e+12 9.96578e+07

Things that would not exist without the FFT include: Satellite
communications, mobile phones, CAT, PET, VOIP, CD, JPEG, MPEG
DVD, DVTB. . .

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 36 / 47

Algorithm

From the above discussion, we now know what a computer scientist does
(most of the time):

1 Study the representation of the problem data;

2 Figure out if for a given problem there is an algorithm;

3 Figure out if there are more algorithms, perhaps with different
efficiencies;

4 Find a good implementation of a given algorithm;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 37 / 47

Computer Languages

To get a computer do what you want you have to talk to it.

Deep down computers are
exceedingly stupid, they only understand 0s
and 1s. But: with zeros and ones you can
build pretty amazing things. Anyway, when
you’re in front of a computer you have to

Talk to them in a language
that’s precise and unambiguous;

Employ a translator (unless you
can talk 011100110100111010111. . .)

Every now and then, get down to their
level, and see why they are (mis)behaving

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 38 / 47

Computer Languages

To get a computer do what you want you have to talk to it.
Deep down computers are
exceedingly stupid, they only understand 0s
and 1s. But: with zeros and ones you can
build pretty amazing things. Anyway, when
you’re in front of a computer you have to

Talk to them in a language
that’s precise and unambiguous;

Employ a translator (unless you
can talk 011100110100111010111. . .)

Every now and then, get down to their
level, and see why they are (mis)behaving

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 38 / 47

Computer Languages

Languages have three levels of correctness:

1 Lexical (Ash nazg durbatulûk);

2 Syntactic (fly airplane an ? does);

3 Semantics (The airplane is reading a nice book).

Computer translators can be

1 Compilers;

2 Interpreters.

They can help you a lot with lexical and syntactic analysis; semantics is
much harder.

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 39 / 47

Computer Languages

The translation (compile) chain:

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 40 / 47

Computer Languages

What sits between you and the computer?

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 41 / 47

Computer Languages: hello world

Fortran:

program h e l l o
wr i t e (∗ ,∗) ’ H e l l o wor ld ’

end program h e l l o

C:

#inc l u d e <s t d i o . h>
vo id main ()
{

p r i n t f (” He l l o wor ld \n”) ;
}

C++

#inc l u d e <s t d i o>
main ()
{

cout << ” He l l o wor ld ”<<end l ;
}

Matlab:

f p r i n t f (’ H e l l o wor ld \n ’) ;

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 42 / 47

Matlab

MATLAB (matrix laboratory) is a numerical computing environment.
http://www.mathworks.it/ Comprises:

An interpreted environment;

A C-like programming syntax;

A Fortran-90 like array language;

Extensive access to widespread libraries;

Graphical capabilities;

Interfacing with other languages.

Very important if you are using one the toolboxes (e.g. Control systems).

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 43 / 47

http://www.mathworks.it/

Matlab

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 44 / 47

Octave

Octave http://www.gnu.org/software/octave/: a free software
environment, largely compatible with Matlab

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 45 / 47

http://www.gnu.org/software/octave/

Practical info

For the purposes of this course, Octave should be sufficient:

Linux: it is included in Fedora 21 and Ubuntu 14.10; ask Uniroma2
LUG to get the GUI started;

Mac: get it from http://www.macports.org;

Windows: get it from http://mxeoctave.osuv.de.

You may also consider getting a student license of Matlab.
My email address (again):

salvatore.filippone@uniroma2.it

Exam:

Written exam only;

Set of questions;

Small programming assignment.

Receiving times: to be announced later.

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 46 / 47

http://www.macports.org
http://mxeoctave.osuv.de

Bibliography

Textbook:

S. Attaway: MATLAB, a practical introduction to
programming and problem solving, 3rd ed.,
Butterworh-Heinemann

Other material

1 D. Smith: Engineering Computation with MATLAB, Pearson;

2 G: Rodriguez: Algoritmi Numerici, Pitagora editrice.

3 S. Chapman: MATLAB programming for engineers, Thomson;

4 D. Higham and N. Higham: MATLAB guide, SIAM;

5 S. Ceri, D. Mandrioli, L. Sbattella: Informatica: programmazione, Mc
Graw-Hill

(salvatore.filippone@uniroma2.it http://people.uniroma2.it/salvatore.filippone)Introduction 2014–2015 47 / 47

