
Computing Fundamentals
Matrices and Linear Algebra Operators

Salvatore Filippone

salvatore.filippone@uniroma2.it

2014–2015

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 1 / 24

Matrices

Recall arithmetic operators on arrays:

Unary minus - (change sign);

Addition/subtraction by a scalar v+1;

Multiplication/division by a scalar alpha*v, v/beta;

Element-by-element operators + - .* ./ .^

Comparison and logical operators < > <= >= any find | &

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 2 / 24

Matrices

Look again: Matrix Operators
Matrix-matrix: product.

C = A∗B

This is the classical multiplication of matrices as defined in linear algebra

C = AB ⇐⇒ Cij =
∑
k

AikBkj

Map a linear space into another;

Special cases: rotations, axis scaling, etc.

Rule: number of columns of first matrix must be same as number of rows
of second.
The product is not commutative, given A*B, B*A will be different or may
not even exist at all!

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 3 / 24

Matrices

Matrix transpose: Bij = Aji

B = A’

Matrix exponentiation (by an integer):

B = Aˆn

requires A to be square.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 4 / 24

Matrices

Properties of matrix operators:

Addition is commutative and associative:

A + B = B + A, A + (B + C) = (A + B) + C

Multiplication is associative but not commutative:

A ∗ B 6= B ∗ A, A ∗ (B ∗ C) = (A ∗ B) ∗ C

Multiplication is distributive on both sides:

A ∗ (B + C) = A ∗ B + A ∗ C , (A + B) ∗ C = A ∗ C + B ∗ C

Transpose and inversion of products:

(A ∗ B)T = (BT) ∗ (AT), (A ∗ B)−1 = (B−1) ∗ (A−1)

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 5 / 24

Matrices

Predefined matrices:

eye(m,n) The identity (neutral element of multiplication);

zeros(m,n) (neutral element of addition);

ones(m,n)

rand(m,n) (uniform distribution)

magic(n) N × N magic square

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 6 / 24

Matrices

Division: what is division, anyway?

Division is the inverse of the multiplication operation

So, if we have
AB = C ,

we can think of division as the operator that combines A and C to give
back B. When A is square and non singular, this is formally equivalent to
the multiplication by the inverse

B = A−1C ,

and this is in turn equivalent to the Octave/Matlab statement:

B = A\C

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 7 / 24

Matrices

Division: what is division, anyway?

Division is the inverse of the multiplication operation

So, if we have
AB = C ,

we can think of division as the operator that combines A and C to give
back B. When A is square and non singular, this is formally equivalent to
the multiplication by the inverse

B = A−1C ,

and this is in turn equivalent to the Octave/Matlab statement:

B = A\C

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 7 / 24

Matrices

Division: what is division, anyway?

Division is the inverse of the multiplication operation

So, if we have
AB = C ,

we can think of division as the operator that combines A and C to give
back B. When A is square and non singular, this is formally equivalent to
the multiplication by the inverse

B = A−1C ,

and this is in turn equivalent to the Octave/Matlab statement:

B = A\C

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 7 / 24

Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:

Multiplication by a matrix is non-commutative, therefore we can
expect to have different left and right divisions;

The inverse is well-defined for (non-singular) square matrices;

Inverting a multiplication is equivalent to solving a linear system.

The last point is key to understanding the behaviour of Octave/Matlab
matrix division operator, so we state it again:

X=A\B is the same as computing the solution to AX = B; and
therefore

X=B/A is the same as computing the solution to XA = B; but we also
have BT = (XA)T = ATXT , that is X’= A’\B’; therefore
B/A = (A’\B’)’

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 8 / 24

Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:

Multiplication by a matrix is non-commutative, therefore we can
expect to have different left and right divisions;

The inverse is well-defined for (non-singular) square matrices;

Inverting a multiplication is equivalent to solving a linear system.

The last point is key to understanding the behaviour of Octave/Matlab
matrix division operator, so we state it again:

X=A\B is the same as computing the solution to AX = B; and
therefore

X=B/A is the same as computing the solution to XA = B; but we also
have BT = (XA)T = ATXT , that is X’= A’\B’; therefore
B/A = (A’\B’)’

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 8 / 24

Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:

Multiplication by a matrix is non-commutative, therefore we can
expect to have different left and right divisions;

The inverse is well-defined for (non-singular) square matrices;

Inverting a multiplication is equivalent to solving a linear system.

The last point is key to understanding the behaviour of Octave/Matlab
matrix division operator, so we state it again:

X=A\B is the same as computing the solution to AX = B; and
therefore

X=B/A is the same as computing the solution to XA = B; but we also
have BT = (XA)T = ATXT , that is X’= A’\B’; therefore
B/A = (A’\B’)’

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 8 / 24

Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:

Multiplication by a matrix is non-commutative, therefore we can
expect to have different left and right divisions;

The inverse is well-defined for (non-singular) square matrices;

Inverting a multiplication is equivalent to solving a linear system.

The last point is key to understanding the behaviour of Octave/Matlab
matrix division operator, so we state it again:

X=A\B is the same as computing the solution to AX = B; and
therefore

X=B/A is the same as computing the solution to XA = B; but we also
have BT = (XA)T = ATXT , that is X’= A’\B’; therefore
B/A = (A’\B’)’

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 8 / 24

Matrices

Let us keep going: from a formal point of view the left division

X=A\B

is equivalent to the multiplication by the inverse

X = inv (A)∗B

In practice you should never compute the inverse explicitly:

It is slower, much slower;

It is less accurate.

The second point would require a long digression into numerical analysis.
For the first point, we need to understand how A\B is actually computed.
First step: if A\B is equivalent to solving

AX = B

are there any matrices A that are easy to handle?

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 9 / 24

Matrices

Let us keep going: from a formal point of view the left division

X=A\B

is equivalent to the multiplication by the inverse

X = inv (A)∗B

In practice you should never compute the inverse explicitly:

It is slower, much slower;

It is less accurate.

The second point would require a long digression into numerical analysis.
For the first point, we need to understand how A\B is actually computed.

First step: if A\B is equivalent to solving

AX = B

are there any matrices A that are easy to handle?

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 9 / 24

Matrices

Let us keep going: from a formal point of view the left division

X=A\B

is equivalent to the multiplication by the inverse

X = inv (A)∗B

In practice you should never compute the inverse explicitly:

It is slower, much slower;

It is less accurate.

The second point would require a long digression into numerical analysis.
For the first point, we need to understand how A\B is actually computed.
First step: if A\B is equivalent to solving

AX = B

are there any matrices A that are easy to handle?

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 9 / 24

Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:

n=s i z e (L , 1) ;
f o r i =1:n

x (i) = b (i) − L (i , 1 : i −1)∗x (1 : i −1);
x (i) = x (i) / L (i , i) ;

end

If the diagonal is unitary, the division steps can be skipped. The total
number of operations executed is ≈ n2.
Same reasoning applies to an upper triangular matrix U with back
substitution.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 10 / 24

Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:

n=s i z e (L , 1) ;
f o r i =1:n

x (i) = b (i) − L (i , 1 : i −1)∗x (1 : i −1);
x (i) = x (i) / L (i , i) ;

end

If the diagonal is unitary, the division steps can be skipped. The total
number of operations executed is ≈ n2.
Same reasoning applies to an upper triangular matrix U with back
substitution.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 10 / 24

LU Factorization

Suppose we are able to decompose

A = LU

where L is lower triangular and U is upper triangular; then we have

Ax = b ⇒ x = U−1L−1b

or

y = L\b ;
x = U\y ;

for a cost (after the decomposition) of ≈ 2n2 operations. (Remember:
solving a triangular system is easy).

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 11 / 24

LU Factorization

Suppose we are able to decompose

A = LU

where L is lower triangular and U is upper triangular; then we have

Ax = b ⇒ x = U−1L−1b

or

y = L\b ;
x = U\y ;

for a cost (after the decomposition) of ≈ 2n2 operations. (Remember:
solving a triangular system is easy).

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 11 / 24

LU Factorization

We want to factor A = LU

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 l11
l21 l22
l31 l32 l33

 u11 u12 u13
u22 u23

u33


Writing down the products and imposing equality: a11

a21
a31

 =

 l11
l21
l31

 (u11)
(
a12 a13

)
= (l11)

(
u12 u13

)
(

a22 a23
a32 a33

)
=

(
l22u22 l22u23
l32u22 l32u23 + l33u33

)
+

(
l21
l31

)(
u12 u13

)
n2 equations in n2 + n unknowns; need additional constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 12 / 24

LU Factorization

We want to factor A = LU a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 l11
l21 l22
l31 l32 l33

 u11 u12 u13
u22 u23

u33



Writing down the products and imposing equality: a11
a21
a31

 =

 l11
l21
l31

 (u11)
(
a12 a13

)
= (l11)

(
u12 u13

)
(

a22 a23
a32 a33

)
=

(
l22u22 l22u23
l32u22 l32u23 + l33u33

)
+

(
l21
l31

)(
u12 u13

)
n2 equations in n2 + n unknowns; need additional constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 12 / 24

LU Factorization

We want to factor A = LU a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 l11
l21 l22
l31 l32 l33

 u11 u12 u13
u22 u23

u33


Writing down the products and imposing equality: a11

a21
a31

 =

 l11
l21
l31

 (u11)
(
a12 a13

)
= (l11)

(
u12 u13

)

(
a22 a23
a32 a33

)
=

(
l22u22 l22u23
l32u22 l32u23 + l33u33

)
+

(
l21
l31

)(
u12 u13

)
n2 equations in n2 + n unknowns; need additional constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 12 / 24

LU Factorization

We want to factor A = LU a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 l11
l21 l22
l31 l32 l33

 u11 u12 u13
u22 u23

u33


Writing down the products and imposing equality: a11

a21
a31

 =

 l11
l21
l31

 (u11)
(
a12 a13

)
= (l11)

(
u12 u13

)
(

a22 a23
a32 a33

)
=

(
l22u22 l22u23
l32u22 l32u23 + l33u33

)
+

(
l21
l31

)(
u12 u13

)

n2 equations in n2 + n unknowns; need additional constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 12 / 24

LU Factorization

We want to factor A = LU a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 l11
l21 l22
l31 l32 l33

 u11 u12 u13
u22 u23

u33


Writing down the products and imposing equality: a11

a21
a31

 =

 l11
l21
l31

 (u11)
(
a12 a13

)
= (l11)

(
u12 u13

)
(

a22 a23
a32 a33

)
=

(
l22u22 l22u23
l32u22 l32u23 + l33u33

)
+

(
l21
l31

)(
u12 u13

)
n2 equations in n2 + n unknowns; need additional constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 12 / 24

LU Factorization: the algorithm

Factor the diagonal (auxiliary constraint: lii = 1)

Compute
(
a11

)
→
(
l11
)

(u11)

Update the first column:(
l21
l31

)
←
(

a21
a31

)
(u11)−1

Update the first row:(
u12 u13

)
← (l11)−1 (a12 a13

)
Update the lower-right submatrix;(

â22 â23
â32 â33

)
←
(

a22 a23
a32 a33

)
−
(

l21
l31

)(
u12 u13

)
Apply recursively to lower-right submatrix;

The total cost is ≈ 2
3n

3.
(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 13 / 24

LU Factorization: the algorithm

Factor the diagonal (auxiliary constraint: lii = 1)

Compute
(
a11

)
→
(
l11
)

(u11)

Update the first column:(
l21
l31

)
←
(

a21
a31

)
(u11)−1

Update the first row:(
u12 u13

)
← (l11)−1 (a12 a13

)
Update the lower-right submatrix;(

â22 â23
â32 â33

)
←
(

a22 a23
a32 a33

)
−
(

l21
l31

)(
u12 u13

)
Apply recursively to lower-right submatrix;

The total cost is ≈ 2
3n

3.
(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 13 / 24

LU Factorization: the algorithm

Factor the diagonal (auxiliary constraint: lii = 1)

Compute
(
a11

)
→
(
l11
)

(u11)

Update the first column:(
l21
l31

)
←
(

a21
a31

)
(u11)−1

Update the first row:(
u12 u13

)
← (l11)−1 (a12 a13

)

Update the lower-right submatrix;(
â22 â23
â32 â33

)
←
(

a22 a23
a32 a33

)
−
(

l21
l31

)(
u12 u13

)
Apply recursively to lower-right submatrix;

The total cost is ≈ 2
3n

3.
(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 13 / 24

LU Factorization: the algorithm

Factor the diagonal (auxiliary constraint: lii = 1)

Compute
(
a11

)
→
(
l11
)

(u11)

Update the first column:(
l21
l31

)
←
(

a21
a31

)
(u11)−1

Update the first row:(
u12 u13

)
← (l11)−1 (a12 a13

)
Update the lower-right submatrix;(

â22 â23
â32 â33

)
←
(

a22 a23
a32 a33

)
−
(

l21
l31

)(
u12 u13

)

Apply recursively to lower-right submatrix;

The total cost is ≈ 2
3n

3.
(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 13 / 24

LU Factorization: the algorithm

Factor the diagonal (auxiliary constraint: lii = 1)

Compute
(
a11

)
→
(
l11
)

(u11)

Update the first column:(
l21
l31

)
←
(

a21
a31

)
(u11)−1

Update the first row:(
u12 u13

)
← (l11)−1 (a12 a13

)
Update the lower-right submatrix;(

â22 â23
â32 â33

)
←
(

a22 a23
a32 a33

)
−
(

l21
l31

)(
u12 u13

)
Apply recursively to lower-right submatrix;

The total cost is ≈ 2
3n

3.
(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 13 / 24

LU Factorization

f u n c t i o n [L , U]= l u f a c t 1 (A)
(na rg i n () == 1) | | usage (” [L ,U] = l u f a c t 1 (A) ”) ;

m=s i z e (A , 1) ; n=s i z e (A , 2) ;
i f ((m==0)||(n==0))

r e t u r n
end

mn=min (m, n) ;
f o r j =1:mn

% A(j , j +1:n) = (1 . 0)\A(j , j +1:n) ;
A(j +1:m, j) = A(j +1:m, j) / (A(j , j)) ;
A(j +1:m, j +1:n) = A(j +1:m, j +1:n) − A(j +1:m, j)∗A(j , j +1:n) ;

end

i f (nargout () < 1)
ans = A

e l s e i f (nargout () == 1)
L=A;

e l s e i f (nargout () > 1)
L= t r i l (A,−1)+eye (mn) ;
U=t r i u (A) ;

end

end

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 14 / 24

LU Factorization: Pivoting

However we have always assumed we can divide by ujj ; what if we find a
zero value?

When an element on the diagonal is zero, search for a
nonzero in its column, and swap the relevant rows

This is equivalent to applying P

PA =

(
0 1
1 0

)(
0 1.5
2 0

)
=

(
2 0
0 1.5

)

Thus we are computing PA = LU to get at the solution

Ax = b ⇒ PAx = Pb ⇒ LUx = Pb ⇒ x = U−1L−1Pb

Extension: what is zero? Always search for the coefficient with largest
absolute value!

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 15 / 24

LU Factorization: Pivoting

However we have always assumed we can divide by ujj ; what if we find a
zero value?

When an element on the diagonal is zero, search for a
nonzero in its column, and swap the relevant rows

This is equivalent to applying P

PA =

(
0 1
1 0

)(
0 1.5
2 0

)
=

(
2 0
0 1.5

)

Thus we are computing PA = LU to get at the solution

Ax = b ⇒ PAx = Pb ⇒ LUx = Pb ⇒ x = U−1L−1Pb

Extension: what is zero? Always search for the coefficient with largest
absolute value!

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 15 / 24

LU Factorization: Pivoting

However we have always assumed we can divide by ujj ; what if we find a
zero value?

When an element on the diagonal is zero, search for a
nonzero in its column, and swap the relevant rows

This is equivalent to applying P

PA =

(
0 1
1 0

)(
0 1.5
2 0

)
=

(
2 0
0 1.5

)

Thus we are computing PA = LU to get at the solution

Ax = b ⇒ PAx = Pb ⇒ LUx = Pb ⇒ x = U−1L−1Pb

Extension: what is zero? Always search for the coefficient with largest
absolute value!

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 15 / 24

LU Factorization: Pivoting

f u n c t i o n [L , U, P]= l u p f a c t 1 (A)
(na rg i n () ==1) | | usage (” [L ,U,P] = l u p f a c t 1 (A) ”) ;
m=s i z e (A , 1) ; n=s i z e (A , 2) ;
i f ((m==0)||(n==0))

r e t u r n
end

mn=min (m, n) ; l p=eye (m) ;
f o r j =1:mn

[mx , i x] = max(abs (A(j :m, j))) ; i x=i x+j−1;
tmp (1 : n) = A(j , 1 : n) ; A(j , 1 : n) = A(ix , 1 : n) ; A(i x , 1 : n) = tmp (1 : n) ;
tmp (1 :m) = l p (j , 1 :m) ; l p (j , 1 :m) = l p (i x , 1 :m) ; l p (i x , 1 :m) = tmp (1 :m) ;

% A(j , j +1:n) = (1 . 0)\A(j , j +1:n) ;
A(j +1:m, j) = A(j +1:m, j) / (A(j , j)) ;
A(j +1:m, j +1:n) = A(j +1:m, j +1:n) − A(j +1:m, j)∗A(j , j +1:n) ;

end

i f (nargout () < 1)
ans = A

e l s e i f (nargout () == 1)
L = A;

e l s e i f (nargout () >= 2)
L= t r i l (A,−1); L (1 :mn , 1 :mn)=L (1 :mn , 1 :mn)+eye (mn) ; U=t r i u (A) ;
i f (nargout ()>2)

P=l p ;
end

end
end

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 16 / 24

LU Factorization: Pivoting

Whenever you apply the division operator

x=A\b ;

this is what Octave/Matlab does internally:

[L , U, P] = l u (A) ;
z=P∗b ;
y=L\ z ;
x=U\y ;

The most expensive part is the invocation of the lu function (2/3n3).

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 17 / 24

LU Factorization: Pivoting

If you are solving multiple linear systems with the same matrix, it is more
efficient to do:

[L , U, P] = l u (A) ;
f o r j =1:k

b = r h s (j) ; % C r e a t e th e n e x t RHS
z=P∗b ;
y=L\ z ;
x=U\y ;
% do someth ing w i t h x

end

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 18 / 24

LU Factorization

What about inv(A)? Actually this is computed with

A−1 = U−1L−1P

No wonder it costs more: it starts with LU factorization, then goes on
with more computations!

Never explicitly form inv(A)*B, always use A\B.

Cases where you really need the inverse exist but are (vanishingly) rare.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 19 / 24

Matrix division (reloaded)

So far we have only ever handled cases where A is square: since you have
to solve a linear system, trying the \ operator with a rectangular matrix
will throw an error. Right?

Well, let’s try:

o c t a v e :20> a = [1 , 2 ; 3 , 4 ; 5 , 6 ;]
a =

1 2
3 4
5 6

o c t a v e :21> b = [3 , 4 , 5] ’ ;
o c t a v e :22> x=a\b

x =
−2.0000

2 .5000

What’s going on here?

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 20 / 24

Matrix division (reloaded)

So far we have only ever handled cases where A is square: since you have
to solve a linear system, trying the \ operator with a rectangular matrix
will throw an error. Right? Well, let’s try:

o c t a v e :20> a = [1 , 2 ; 3 , 4 ; 5 , 6 ;]
a =

1 2
3 4
5 6

o c t a v e :21> b = [3 , 4 , 5] ’ ;
o c t a v e :22> x=a\b

x =
−2.0000

2 .5000

What’s going on here?

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 20 / 24

Matrix division (reloaded)

So far we have only ever handled cases where A is square: since you have
to solve a linear system, trying the \ operator with a rectangular matrix
will throw an error. Right? Well, let’s try:

o c t a v e :20> a = [1 , 2 ; 3 , 4 ; 5 , 6 ;]
a =

1 2
3 4
5 6

o c t a v e :21> b = [3 , 4 , 5] ’ ;
o c t a v e :22> x=a\b

x =
−2.0000

2 .5000

What’s going on here?

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 20 / 24

Matrix division (reloaded)

Go back to the beginning and say it again:

Applying the matrix division operator x=A\b is equivalent to
solving the linear system Ax = b

So, to define division for a rectangular matrix we need to know what to do
with a linear system:

Ax = b

when A is m × n and m 6= n (i.e.: rectangular).

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 21 / 24

Matrix division (reloaded)

Go back to the beginning and say it again:

Applying the matrix division operator x=A\b is equivalent to
solving the linear system Ax = b

So, to define division for a rectangular matrix we need to know what to do
with a linear system:

Ax = b

when A is m × n and m 6= n (i.e.: rectangular).

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 21 / 24

Matrix division (reloaded)

Linear algebra comes to the rescue:

When A is not square, we can minimize the mismatch
between RHS and LHS, i.e. we search for a least-squares solution

Ax = b ⇒ min
x
‖Ax − b‖2

When A is square and non-singular this reduces to a “normal” system
solution.
The least squares solution is computed through the QR factorization

A = QR

where Q is orthogonal (i.e. QQT = QTQ = I) and R is upper triangular
(trapezoidal).

[Q, R]= qr (A) ;

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 22 / 24

Matrix division (reloaded)

Here are the full rules for

X = A \ B ;

When A is a scalar, this is simply a term-by-term division;

otherwise:

The matrices A and B must have the same number of rows;

The number of rows of X equals the number of columns of A;

The number of columns of X equals the number of columns of B;

The solution always exists in the least squares sense, not necessarily
in the usual matrix inversion sense; moreover, it is not necessarily
unique;

The right division X=B/A is equivalent to

X = (A’\B ’) ’ ;

from which we can derive the row/columns constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 23 / 24

Matrix division (reloaded)

Here are the full rules for

X = A \ B ;

When A is a scalar, this is simply a term-by-term division; otherwise:

The matrices A and B must have the same number of rows;

The number of rows of X equals the number of columns of A;

The number of columns of X equals the number of columns of B;

The solution always exists in the least squares sense, not necessarily
in the usual matrix inversion sense; moreover, it is not necessarily
unique;

The right division X=B/A is equivalent to

X = (A’\B ’) ’ ;

from which we can derive the row/columns constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 23 / 24

Matrix division (reloaded)

Here are the full rules for

X = A \ B ;

When A is a scalar, this is simply a term-by-term division; otherwise:

The matrices A and B must have the same number of rows;

The number of rows of X equals the number of columns of A;

The number of columns of X equals the number of columns of B;

The solution always exists in the least squares sense, not necessarily
in the usual matrix inversion sense; moreover, it is not necessarily
unique;

The right division X=B/A is equivalent to

X = (A’\B ’) ’ ;

from which we can derive the row/columns constraints.

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 23 / 24

An example: curve fitting

Suppose you are measuring a physical phenomenon: you get a set of points
(xi , yi) and you make a guess: they lie on a parabola. You should have

yi = ax2i + bxi + c , i = 1, . . . n

for some (unknown) coefficients a, b, c . However measurements have
noise, so the equations will not be satisfied exactly. What do you do?

C = XX\Y
where

XX =


x21 x1 1
x22 x2 1

...
...

...
x2n xn 1


The coefficients will give the best fit parabola. BTW: use the
Vandermonde matrix function

XX = v a n de r (x , 3)

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 24 / 24

An example: curve fitting

Suppose you are measuring a physical phenomenon: you get a set of points
(xi , yi) and you make a guess: they lie on a parabola. You should have

yi = ax2i + bxi + c , i = 1, . . . n

for some (unknown) coefficients a, b, c . However measurements have
noise, so the equations will not be satisfied exactly. What do you do?

C = XX\Y
where

XX =


x21 x1 1
x22 x2 1

...
...

...
x2n xn 1


The coefficients will give the best fit parabola. BTW: use the
Vandermonde matrix function

XX = v a n de r (x , 3)

(salvatore.filippone@uniroma2.it) Linear Algebra 2014–2015 24 / 24

