Computing Fundamentals
Matrices and Linear Algebra Operators

Salvatore Filippone

salvatore.filippone@uniroma2.it

2014–2015
Recall arithmetic operators on arrays:

- Unary minus $-$ (change sign);
- Addition/subtraction by a scalar $v+1$;
- Multiplication/division by a scalar $\alpha v, v/\beta$;
- Element-by-element operators $+ - .* ./ .^$
- Comparison and logical operators $< > <= >= \text{any find} | \&$
Look again: Matrix Operators
Matrix-matrix: product.

\[C = A \ast B \]

This is the classical multiplication of matrices as defined in linear algebra

\[C = AB \iff C_{ij} = \sum_k A_{ik} B_{kj} \]

- Map a linear space into another;
- Special cases: rotations, axis scaling, etc.

Rule: number of columns of first matrix must be same as number of rows of second.

The product is not commutative, given \(A \ast B \), \(B \ast A \) will be different or may not even exist at all!
Matrix transpose: $B_{ij} = A_{ji}$

$B = A'$

Matrix exponentiation (by an integer):

$B = A^n$

requires A to be square.
Properties of matrix operators:

- **Addition** is commutative and associative:
 \[A + B = B + A, \quad A + (B + C) = (A + B) + C \]

- **Multiplication** is associative but *not* commutative:
 \[A \ast B \neq B \ast A, \quad A \ast (B \ast C) = (A \ast B) \ast C \]

- **Multiplication** is distributive on both sides:
 \[A \ast (B + C) = A \ast B + A \ast C, \quad (A + B) \ast C = A \ast C + B \ast C \]

- **Transpose and inversion** of products:
 \[(A \ast B)^T = (B^T) \ast (A^T), \quad (A \ast B)^{-1} = (B^{-1}) \ast (A^{-1}) \]
Predefined matrices:

- `eye(m,n)` The identity (neutral element of multiplication);
- `zeros(m,n)` (neutral element of addition);
- `ones(m,n)`
- `rand(m,n)` (uniform distribution)
- `magic(n)` $N \times N$ magic square
Division: what is division, anyway?
Division: what is division, anyway?

Division is the inverse of the multiplication operation
Division: what is division, anyway?

Division is the inverse of the multiplication operation

So, if we have

\[AB = C, \]

we can think of division as the operator that combines \(A \) and \(C \) to give back \(B \). When \(A \) is square and non singular, this is \textit{formally} equivalent to the multiplication by the inverse

\[B = A^{-1}C, \]

and this is in turn equivalent to the Octave/Matlab statement:

\[B = A\backslash C \]
From a purely abstract point of view division is thus equivalent to multiplication by the inverse. But this is not sufficient. Note that:

- Multiplication by a matrix is non-commutative, therefore we can expect to have different left and right divisions;
- The inverse is well-defined for (non-singular) square matrices;
- Inverting a multiplication is equivalent to solving a linear system.

The last point is key to understanding the behaviour of Octave/Matlab matrix division operator, so we state it again:

\[X = A \backslash B \]

is the same as computing the solution to

\[AX = B; \]

and therefore

\[X = B / A \]

is the same as computing the solution to

\[XA = B;\]

but we also have

\[B^T = (XA)^T = A^TX^T,\]

that is

\[X' = A'^B';\]

therefore

\[B / A = (A'^B')'.\]
From a purely abstract point of view division is thus equivalent to multiplication by the inverse. But this is not sufficient. Note that:

- Multiplication by a matrix is non-commutative, therefore we can expect to have different *left* and *right* divisions;
- The inverse is well-defined for (non-singular) square matrices;
From a purely abstract point of view division is thus equivalent to multiplication by the inverse. But this is not sufficient. Note that:

- Multiplication by a matrix is non-commutative, therefore we can expect to have different *left* and *right* divisions;
- The inverse is well-defined for (non-singular) square matrices;
- Inverting a multiplication is equivalent to solving a linear system.
From a purely abstract point of view division is thus equivalent to multiplication by the inverse. But this is not sufficient. Note that:

- Multiplication by a matrix is non-commutative, therefore we can expect to have different left and right divisions;
- The inverse is well-defined for (non-singular) square matrices;
- Inverting a multiplication is equivalent to solving a linear system.

The last point is key to understanding the behaviour of Octave/Matlab matrix division operator, so we state it again:

- $X = A \backslash B$ is the same as computing the solution to $AX = B$; and therefore
- $X = B / A$ is the same as computing the solution to $XA = B$; but we also have $B^T = (XA)^T = A^T X^T$, that is $X' = A' \backslash B'$; therefore $B / A = (A' \backslash B')$’
Let us keep going: from a formal point of view the left division

\[X = A \backslash B \]

is equivalent to the multiplication by the inverse

\[X = \text{inv}(A) \ast B \]
Let us keep going: from a formal point of view the left division

\[X = A \backslash B \]

is equivalent to the multiplication by the inverse

\[X = \text{inv}(A) \ast B \]

In practice you should *never* compute the inverse explicitly:

- It is slower, much slower;
- It is less accurate.

The second point would require a long digression into numerical analysis. For the first point, we need to understand how \(A \backslash B \) is actually computed.
Let us keep going: from a formal point of view the left division

\[X = A \backslash B \]

is equivalent to the multiplication by the inverse

\[X = \text{inv}(A) \ast B \]

In practice you should never compute the inverse explicitly:
- It is slower, much slower;
- It is less accurate.

The second point would require a long digression into numerical analysis. For the first point, we need to understand how \(A \backslash B \) is actually computed. First step: if \(A \backslash B \) is equivalent to solving

\[AX = B \]

are there any matrices \(A \) that are easy to handle?
If a coefficient matrix is lower triangular it is easy to solve $Lx = b$ by forward substitution:

\begin{verbatim}
\text{n = size}(L,1);
\text{for} \ i = 1:\text{n}
\quad x(i) = b(i) - L(i,1:i-1)*x(1:i-1);
\quad x(i) = x(i)/L(i,i);
\text{end}
\end{verbatim}

If the diagonal is unitary, the division steps can be skipped. The total number of operations executed is \(\approx n^2\). The same reasoning applies to an upper triangular matrix U with back substitution.
If a coefficient matrix is lower triangular it is easy to solve $Lx = b$ by forward substitution:

```matlab
n = size(L, 1);
for i = 1:n
    x(i) = b(i) - L(i, 1:i-1)*x(1:i-1);
    x(i) = x(i) / L(i, i);
end
```

If the diagonal is unitary, the division steps can be skipped. The total number of operations executed is $\approx n^2$.

Same reasoning applies to an upper triangular matrix U with back substitution.
Suppose we are able to decompose

$$A = LU$$

where L is lower triangular and U is upper triangular; then we have

$$Ax = b \Rightarrow x = U^{-1}L^{-1}b$$

or
Suppose we are able to decompose

\[A = LU \]

where \(L \) is lower triangular and \(U \) is upper triangular; then we have

\[Ax = b \implies x = U^{-1}L^{-1}b \]

or

\[
\begin{align*}
y &= L\backslash b; \\
x &= U\backslash y;
\end{align*}
\]

for a cost (after the decomposition) of \(\approx 2n^2 \) operations. (Remember: solving a triangular system is easy).
We want to factor $A = LU$
We want to factor $A = LU$

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
 l_{11} \\
 l_{21} & l_{22} \\
 l_{31} & l_{32} & l_{33}
\end{pmatrix}
\begin{pmatrix}
 u_{11} & u_{12} & u_{13} \\
 u_{22} & u_{23} \\
 u_{33}
\end{pmatrix}
\]
LU Factorization

We want to factor $A = LU$

$$
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
 l_{11} \\
 l_{21} \\
 l_{31}
\end{pmatrix}
\begin{pmatrix}
 u_{11} & u_{12} & u_{13} \\
 u_{22} & u_{23} \\
 u_{33}
\end{pmatrix}
$$

Writing down the products and imposing equality:

$$
\begin{pmatrix}
 a_{11} \\
 a_{21} \\
 a_{31}
\end{pmatrix}
=
\begin{pmatrix}
 l_{11} \\
 l_{21} \\
 l_{31}
\end{pmatrix}
\begin{pmatrix}
 u_{11}
\end{pmatrix}
\begin{pmatrix}
 a_{12} & a_{13}
\end{pmatrix}
=
\begin{pmatrix}
 l_{11}
\end{pmatrix}
\begin{pmatrix}
 u_{12} & u_{13}
\end{pmatrix}
$$
We want to factor $A = LU$

$$
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
 l_{11} \\
 l_{21} \\
 l_{31}
\end{pmatrix}
\begin{pmatrix}
 u_{11} & u_{12} & u_{13} \\
 l_{22} & l_{22} & l_{23} \\
 l_{31} & l_{32} & l_{33}
\end{pmatrix}
\begin{pmatrix}
 u_{11} \\
 u_{22} \\
 u_{33}
\end{pmatrix}
$$

Writing down the products and imposing equality:

$$
\begin{pmatrix}
 a_{11} \\
 a_{21} \\
 a_{31}
\end{pmatrix}
=
\begin{pmatrix}
 l_{11} \\
 l_{21} \\
 l_{31}
\end{pmatrix}
\begin{pmatrix}
 u_{11}
\end{pmatrix}
\quad
\begin{pmatrix}
 a_{12} & a_{13}
\end{pmatrix}
=
\begin{pmatrix}
 l_{11}
\end{pmatrix}
\begin{pmatrix}
 u_{12} & u_{13}
\end{pmatrix}
$$

$$
\begin{pmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{pmatrix}
=
\begin{pmatrix}
 l_{22}u_{22} & l_{22}u_{23} \\
 l_{32}u_{22} & l_{32}u_{23} + l_{33}u_{33}
\end{pmatrix}
+
\begin{pmatrix}
 l_{21} \\
 l_{31}
\end{pmatrix}
\begin{pmatrix}
 u_{12} & u_{13}
\end{pmatrix}
$$
We want to factor \(A = LU \)

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix} =
\begin{pmatrix}
 l_{11} & & \\
 l_{21} & l_{22} & \\
 l_{31} & l_{32} & l_{33}
\end{pmatrix}
\begin{pmatrix}
 u_{11} & u_{12} & u_{13} \\
 & u_{22} & u_{23} \\
 & & u_{33}
\end{pmatrix}
\]

Writing down the products and imposing equality:

\[
\begin{pmatrix}
 a_{11} \\
 a_{21} \\
 a_{31}
\end{pmatrix} =
\begin{pmatrix}
 l_{11} \\
 l_{21} \\
 l_{31}
\end{pmatrix}
\begin{pmatrix}
 u_{11}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 a_{12} & a_{13}
\end{pmatrix} =
\begin{pmatrix}
 l_{11}
\end{pmatrix}
\begin{pmatrix}
 u_{12} & u_{13}
\end{pmatrix}
\]

\[
\begin{pmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{pmatrix} =
\begin{pmatrix}
 l_{22}u_{22} & l_{22}u_{23} \\
 l_{32}u_{22} & l_{32}u_{23} + l_{33}u_{33}
\end{pmatrix}
+\begin{pmatrix}
 l_{21} \\
 l_{31}
\end{pmatrix}
\begin{pmatrix}
 u_{12} & u_{13}
\end{pmatrix}
\]

\(n^2 \) equations in \(n^2 + n \) unknowns; need additional constraints.
LU Factorization: the algorithm

- Factor the diagonal (auxiliary constraint: $l_{ii} = 1$)

 Compute $(a_{11}) \rightarrow (l_{11})(u_{11})$

The total cost is $\approx \frac{2}{3} n^3$.
LU Factorization: the algorithm

- Factor the diagonal (auxiliary constraint: \(l_{ii} = 1 \))

 \[
 \text{Compute } (a_{11}) \rightarrow (l_{11})(u_{11})
 \]

- Update the first column:

 \[
 \begin{pmatrix}
 l_{21} \\
 l_{31}
 \end{pmatrix}
 \leftarrow
 \begin{pmatrix}
 a_{21} \\
 a_{31}
 \end{pmatrix}(u_{11})^{-1}
 \]

The total cost is \(\approx \frac{2}{3}n^3 \).
LU Factorization: the algorithm

- Factor the diagonal (auxiliary constraint: \(l_{ii} = 1 \))

 \[
 \text{Compute } \begin{pmatrix} a_{11} \end{pmatrix} \rightarrow \begin{pmatrix} l_{11} \end{pmatrix} (u_{11})
 \]

- Update the first column:

 \[
 \begin{pmatrix} l_{21} \\ l_{31} \end{pmatrix} \leftarrow \begin{pmatrix} a_{21} \\ a_{31} \end{pmatrix} (u_{11})^{-1}
 \]

- Update the first row:

 \[
 \begin{pmatrix} u_{12} & u_{13} \end{pmatrix} \leftarrow (l_{11})^{-1} \begin{pmatrix} a_{12} & a_{13} \end{pmatrix}
 \]

The total cost is \(\approx \frac{2}{3} n^3 \).
LU Factorization: the algorithm

- Factor the diagonal (auxiliary constraint: \(l_{ii} = 1 \))

 \[
 \text{Compute } \begin{pmatrix} a_{11} \end{pmatrix} \rightarrow \begin{pmatrix} l_{11} \end{pmatrix} \begin{pmatrix} u_{11} \end{pmatrix}
 \]

- Update the first column:

 \[
 \begin{pmatrix} l_{21} \\ l_{31} \end{pmatrix} \leftarrow \begin{pmatrix} a_{21} \\ a_{31} \end{pmatrix} \begin{pmatrix} u_{11} \end{pmatrix}^{-1}
 \]

- Update the first row:

 \[
 \begin{pmatrix} u_{12} & u_{13} \end{pmatrix} \leftarrow (l_{11})^{-1} \begin{pmatrix} a_{12} & a_{13} \end{pmatrix}
 \]

- Update the lower-right submatrix:

 \[
 \begin{pmatrix} \hat{a}_{22} & \hat{a}_{23} \\ \hat{a}_{32} & \hat{a}_{33} \end{pmatrix} \leftarrow \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - \begin{pmatrix} l_{21} \\ l_{31} \end{pmatrix} \begin{pmatrix} u_{12} & u_{13} \end{pmatrix}
 \]

The total cost is \(\approx \frac{2}{3} n^3 \).
LU Factorization: the algorithm

- Factor the diagonal (auxiliary constraint: $l_{ii} = 1$)

 \[
 \text{Compute } (a_{11}) \rightarrow (l_{11})(u_{11})
 \]

- Update the first column:

 \[
 \begin{pmatrix}
 l_{21} \\
 l_{31}
 \end{pmatrix}
 \leftarrow
 \begin{pmatrix}
 a_{21} \\
 a_{31}
 \end{pmatrix}
 (u_{11})^{-1}
 \]

- Update the first row:

 \[
 \begin{pmatrix}
 u_{12} & u_{13}
 \end{pmatrix}
 \leftarrow
 (l_{11})^{-1}
 \begin{pmatrix}
 a_{12} & a_{13}
 \end{pmatrix}
 \]

- Update the lower-right submatrix;

 \[
 \begin{pmatrix}
 \hat{a}_{22} & \hat{a}_{23} \\
 \hat{a}_{32} & \hat{a}_{33}
 \end{pmatrix}
 \leftarrow
 \begin{pmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
 \end{pmatrix}
 -
 \begin{pmatrix}
 l_{21} \\
 l_{31}
 \end{pmatrix}
 \begin{pmatrix}
 u_{12} & u_{13}
 \end{pmatrix}
 \]

- Apply recursively to lower-right submatrix;

The total cost is $\approx \frac{2}{3}n^3$.
function [L, U]=lufact1(A)
 (nargin() == 1) || usage("[L,U] = lufact1(A)");

 m=size(A,1); n=size(A,2);
 if ((m==0)||(n==0))
 return
 end

 mn=min(m,n);
 for j=1:mn

 \[A(j, j+1:n) = (1.0) \backslash A(j, j+1:n); \]
 \[A(j+1:m, j) = A(j+1:m, j)/(A(j,j)); \]
 \[A(j+1:m, j+1:n) = A(j+1:m, j+1:n) - A(j+1:m, j)*A(j, j+1:n); \]
 end

 if (nargout() < 1)
 ans = A
 elseif (nargout() == 1)
 L=A;
 elseif (nargout() > 1)
 L=tril(A,-1)+eye(mn);
 U=triu(A);
 end

end
However we have always assumed we can divide by u_{jj}; what if we find a zero value?

When an element on the diagonal is zero, search for a nonzero in its column, and swap the relevant rows. This is equivalent to applying

$$PA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} = P L U$$

Thus we are computing $PA = LU$ to get at the solution $Ax = b \Rightarrow PAx = Pb \Rightarrow LUx = Pb \Rightarrow x = U^{-1}L^{-1}Pb$.

Extension: what is zero? Always search for the coefficient with largest absolute value!
However we have always assumed we can divide by \(u_{jj} \); what if we find a zero value?

When an element on the diagonal is zero, search for a nonzero in its column, and swap the relevant rows

This is equivalent to applying \(P \)

\[
PA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1.5 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1.5 \end{pmatrix}
\]
However we have always assumed we can divide by u_{jj}; what if we find a zero value?

When an element on the diagonal is zero, search for a nonzero in its column, and swap the relevant rows

This is equivalent to applying P

$$PA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1.5 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1.5 \end{pmatrix}$$

Thus we are computing $PA = LU$ to get at the solution

$$Ax = b \Rightarrow PAx = Pb \Rightarrow LUx = Pb \Rightarrow x = U^{-1}L^{-1}Pb$$

Extension: what is zero? *Always* search for the coefficient with largest absolute value!
function [L, U, P]=lupfact1(A)
 (nargin() ==1) || usage("[L,U,P] = lupfact1(A) ");
 m=size(A,1); n=size(A,2);
 if ((m==0)||(n==0))
 return
 end

 mn=min(m,n); lp=eye(m);
 for j=1:mn
 [mx,ix] = max(abs(A(j:m,j))); ix=ix+j-1;
 tmp(1:n) = A(j,1:n); A(j,1:n) = A(ix,1:n); A(ix,1:n) = tmp(1:n);
 tmp(1:m) = lp(j,1:m); lp(j,1:m) = lp(ix,1:m); lp(ix,1:m) = tmp(1:m);
 A(j,j+1:n) = (1.0)/A(j,j+1:n);
 A(j+1:m,j) = A(j+1:m,j)/(A(j,j));
 A(j+1:m,j+1:n) = A(j+1:m,j+1:n) - A(j+1:m,j)*A(j,j+1:n);
 end

 if (nargout() < 1)
 ans = A
 elseif (nargout() == 1)
 L = A;
 elseif (nargout() >= 2)
 L=tril(A,-1); L(1:mn,1:mn)=L(1:mn,1:mn)+eye(mn); U=triu(A);
 if (nargout() >2)
 P=lp;
 end
 end
end
Whenever you apply the division operator

\[x = A \backslash b; \]

this is what Octave/Matlab does internally:

\[
\begin{align*}
\begin{bmatrix} L & U & P \end{bmatrix} &= \text{lu}(A); \\
z &= P \ast b; \\
y &= L \backslash z; \\
x &= U \backslash y;
\end{align*}
\]

The most expensive part is the invocation of the \texttt{lu} function \((2/3n^3)\).
If you are solving multiple linear systems with the same matrix, it is more efficient to do:

\[
[L, U, P] = lu(A);
\]

for \(j = 1:k\)

\[
\begin{align*}
b &= rhs(j); \quad \text{% Create the next RHS} \\
z &= P \ast b; \\
y &= L \backslash z; \\
x &= U \backslash y; \\
\text{% do something with } x
\end{align*}
\]

end
What about $\text{inv}(A)$? Actually this is computed with

$$A^{-1} = U^{-1}L^{-1}P$$

No wonder it costs more: it starts with LU factorization, then goes on with more computations!

Never explicitly form $\text{inv}(A) \ast B$, always use $A \backslash B$.

Cases where you really need the inverse exist but are (vanishingly) rare.
So far we have only ever handled cases where A is square: since you have to solve a linear system, trying the \ operator with a rectangular matrix will throw an error. Right?
So far we have only ever handled cases where A is square: since you have to solve a linear system, trying the \backslash operator with a rectangular matrix will throw an error. Right? Well, let’s try:

```octave
octave:20> a = [1,2;3,4;5,6;]
a =
    1  2
    3  4
    5  6
octave:21> b = [3,4,5]’;
octave:22> x = a \ b
```

What’s going on here?
So far we have only ever handled cases where A is square: since you have to solve a linear system, trying the \ operator with a rectangular matrix will throw an error. Right? Well, let’s try:

```
octave:20> a = [1, 2; 3, 4; 5, 6;]
a =
  1  2
  3  4
  5  6
octave:21> b = [3, 4, 5]’;
octave:22> x = a \ b
```

```
x =
-2.0000
  2.5000
```

What’s going on here?
Go back to the beginning and say it again:

Applying the matrix division operator $x = A \backslash b$ is equivalent to solving the linear system $Ax = b$
Go back to the beginning and say it again:

Applying the matrix division operator \(x = A \backslash b \) *is equivalent to solving the linear system* \(Ax = b \)

So, to define division for a *rectangular* matrix we need to know what to do with a linear system:

\[Ax = b \]

when \(A \) is \(m \times n \) and \(m \neq n \) (i.e.: rectangular).
Linear algebra comes to the rescue:

When A is not square, we can minimize the mismatch between RHS and LHS, i.e. we search for a least-squares solution

\[Ax = b \Rightarrow \min_x \| Ax - b \|_2 \]

When A is square and non-singular this reduces to a “normal” system solution.

The least squares solution is computed through the \(QR \) factorization

\[A = QR \]

where \(Q \) is orthogonal (i.e. \(QQ^T = Q^T Q = I \)) and \(R \) is upper triangular (trapezoidal).

\[[Q, R] = qr(A) \]
Here are the full rules for

\[X = A \backslash B; \]

When A is a scalar, this is simply a term-by-term division;
Here are the full rules for

\[X = A \ \backslash \ B; \]

When \(A \) is a scalar, this is simply a term-by-term division; otherwise:

- The matrices \(A \) and \(B \) must have the same number of rows;
- The number of rows of \(X \) equals the number of columns of \(A \);
- The number of columns of \(X \) equals the number of columns of \(B \);
- The solution always exists in the least squares sense, not necessarily in the usual matrix inversion sense; moreover, it is not necessarily unique.

(salvatore.filippone@uniroma2.it)
Here are the full rules for

\[X = A \setminus B; \]

When \(A \) is a scalar, this is simply a term-by-term division; otherwise:

- The matrices \(A \) and \(B \) must have the same number of rows;
- The number of rows of \(X \) equals the number of columns of \(A \);
- The number of columns of \(X \) equals the number of columns of \(B \);
- The solution always exists in the least squares sense, not necessarily in the usual matrix inversion sense; moreover, it is not necessarily unique;

The right division \(X=B/A \) is equivalent to

\[X = (A' \setminus B')'; \]

from which we can derive the row/columns constraints.
An example: curve fitting

Suppose you are measuring a physical phenomenon: you get a set of points \((x_i, y_i)\) and you make a guess: they lie on a parabola. You should have

\[
y_i = ax_i^2 + bx_i + c, \quad i = 1, \ldots, n
\]

for some (unknown) coefficients \(a, b, c\). However measurements have noise, so the equations will not be satisfied exactly. What do you do?
An example: curve fitting

Suppose you are measuring a physical phenomenon: you get a set of points \((x_i, y_i)\) and you make a guess: they lie on a parabola. You should have

\[y_i = ax_i^2 + bx_i + c, \quad i = 1, \ldots, n \]

for some (unknown) coefficients \(a, b, c\). However measurements have noise, so the equations will not be satisfied exactly. What do you do?

\[C = XX\ Y \]

where

\[
XX = \begin{pmatrix}
{x_1^2} & x_1 & 1 \\
x_2^2 & x_2 & 1 \\
\vdots & \vdots & \vdots \\
x_n^2 & x_n & 1
\end{pmatrix}
\]

The coefficients will give the best fit parabola. BTW: use the Vandermonde matrix function

\[XX = \text{vander}(x, 3) \]