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Matrices

Recall arithmetic operators on arrays:

e Unary minus - (change sign);
Addition /subtraction by a scalar v+1;
Multiplication/division by a scalar alpha*v, v/beta;

Element-by-element operators + - .*x ./ .~

Comparison and logical operators < > <= >= any find | &
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Matrices

Look again: Matrix Operators
Matrix-matrix: product.
C = AxB

This is the classical multiplication of matrices as defined in linear algebra

C=AB«= Cj=)> AyBy
k

@ Map a linear space into another;
@ Special cases: rotations, axis scaling, etc.
Rule: number of columns of first matrix must be same as number of rows

of second.
The product is not commutative, given AxB, BxA will be different or may

not even exist at all!
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Matrices

Matrix transpose: Bj; = Aj;

B=A'

Matrix exponentiation (by an integer):
B =A"n

requires A to be square.
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Matrices

Properties of matrix operators:

@ Addition is commutative and associative:
A+B=B+A A+(B+C)=(A+B)+C
@ Multiplication is associative but not commutative:
AxB#BxA, Ax(BxC)=(AxB)*xC
@ Multiplication is distributive on both sides:
Ax(B+C)=AxB+AxC, (A+B)xC=AxC+BxC
@ Transpose and inversion of products:

(AxB)T =(BT)x(AT), (AxB)'=(BH)x(A™)
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Matrices

Predefined matrices:

eye(m,n) The identity (neutral element of multiplication);
zeros (m,n) (neutral element of addition);
ones(m,n)

rand(m,n) (uniform distribution)

magic(n) N x N magic square
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Division: what is division, anyway?
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Division: what is division, anyway?

Division is the inverse of the multiplication operation
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Matrices

Division: what is division, anyway?

Division is the inverse of the multiplication operation

So, if we have
AB = C,

we can think of division as the operator that combines A and C to give
back B. When A is square and non singular, this is formally equivalent to
the multiplication by the inverse

B=A"C,

and this is in turn equivalent to the Octave/Matlab statement:

B = A\C
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Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:
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Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:

@ Multiplication by a matrix is non-commutative, therefore we can
expect to have different left and right divisions;

@ The inverse is well-defined for (non-singular) square matrices;
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Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:

@ Multiplication by a matrix is non-commutative, therefore we can
expect to have different left and right divisions;

@ The inverse is well-defined for (non-singular) square matrices;

o Inverting a multiplication is equivalent to solving a linear system.
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Matrices

From a purely abstract point of view division is thus equivalent to
multiplication by the inverse. But this is not sufficient. Note that:

@ Multiplication by a matrix is non-commutative, therefore we can

expect to have different left and right divisions;

@ The inverse is well-defined for (non-singular) square matrices;

o Inverting a multiplication is equivalent to solving a linear system.
The last point is key to understanding the behaviour of Octave/Matlab
matrix division operator, so we state it again:

@ X=A\B is the same as computing the solution to AX = B; and

therefore

@ X=B/A is the same as computing the solution to XA = B; but we also

have BT = (XA)T = ATXT, that is X’= A’\B’; therefore
B/A = (A’\B’)’
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Matrices

Let us keep going: from a formal point of view the left division
X=A\B
is equivalent to the multiplication by the inverse

X = inv(A)*B
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Matrices

Let us keep going: from a formal point of view the left division
X=A\B
is equivalent to the multiplication by the inverse
X = inv(A)*B
In practice you should never compute the inverse explicitly:
o It is slower, much slower;

@ It is less accurate.

The second point would require a long digression into numerical analysis.
For the first point, we need to understand how A\B is actually computed.
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Matrices

Let us keep going: from a formal point of view the left division
X=A\B
is equivalent to the multiplication by the inverse
X = inv(A)*B
In practice you should never compute the inverse explicitly:
o It is slower, much slower;

@ It is less accurate.

The second point would require a long digression into numerical analysis.
For the first point, we need to understand how A\B is actually computed.
First step: if A\B is equivalent to solving

AX =B

are there any matrices A that are easy to handle?
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Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:
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Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:
n=size(L,1);
for i=1:n
x(i) =b(i) -
x(i) =x(i) /

end

L(i,1:0i—1)xx(1:i—-1);
L(i i)

If the diagonal is unitary, the division steps can be skipped. The total
number of operations executed is =~ n.
Same reasoning applies to an upper triangular matrix U with back

substitution.
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LU Factorization

Suppose we are able to decompose
A=LU
where L is lower triangular and U is upper triangular; then we have
Ax=b=x=U'L"'b

or
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LU Factorization

Suppose we are able to decompose
A=LU
where L is lower triangular and U is upper triangular; then we have

Ax=b=x=U1L"1p

or
y = L\b;
x = U\y;

for a cost (after the decomposition) of ~ 2n? operations. (Remember:
solving a triangular system is easy).
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LU Factorization

We want to factor A = LU
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LU Factorization

We want to factor A = LU

a1 ar a h1 Uil U2 U13
a1 ax axs | =| b1 uxp U3
a1 a3 ass B1 ko k3 u33
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LU Factorization

We want to factor A = LU

a1 ar a h1 Uil U2 U13
a1 ax axs | =| b1 uxp U3
a1 a3 ass B1 ko k3 u33

Writing down the products and imposing equality:

ai h1
a1 | =1 b1 | (uv11) ( a2 a3 ) = (Ill)( t12 13 )
asl 1
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LU Factorization

We want to factor A = LU

a1 ar a h1 Uil U2 U13
a1 ax axs | =| b1 uxp U3
a1 a3 ass B1 ko k3 u33

Writing down the products and imposing equality:

ai h1
a1 | =1 b1 | (uv11) ( a2 a3 ) = (Ill)( t12 13 )
asl 1

a2 a3 b2 2o b up3 by
= +
( 932 433 ) ( louz ko3 + hk3uss ) < I ) (w2 w3 )
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LU Factorization

We want to factor A = LU

a1 ar a h1 Uil U2 U13
a1 ax axs | =| b1 uxp U3
a1 a3 ass B1 ko k3 u33

Writing down the products and imposing equality:

ai h1
a1 | =1 b1 | (uv11) ( a2 a3 ) = (Ill)( t12 13 )
asl 1

a2 a3 b2 2o b up3 by
= +
( 932 433 ) ( louz ko3 + hk3uss ) < I ) (w2 w3 )

n? equations in n®> + n unknowns; need additional constraints.
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LU Factorization: the algorithm

e Factor the diagonal (auxiliary constraint: /;; = 1)

Compute (a1 ) — ( h1 ) (uv11)

The total cost is ~ %n3.
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LU Factorization: the algorithm

e Factor the diagonal (auxiliary constraint: [;; = 1)
Compute ((a11 ) = ( h1 ) (u11)

o Update the first column:

(5 )= ()

The total cost is ~ %n3.
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LU Factorization: the algorithm

e Factor the diagonal (auxiliary constraint: [;; = 1)
Compute( a ) — ( h1 )(U11)
o Update the first column:
b1 ) < a1 > “1
%
( 31 a3 (un1)
@ Update the first row:

(v w3 )+ (/11)71( a;z a1z )

The total cost is ~ %n3.
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LU Factorization: the algorithm

e Factor the diagonal (auxiliary constraint: [;; = 1)
Compute( a ) — ( h1 )(U11)
o Update the first column:
b1 ) < a1 > “1
%
( h31 as1 (u11)
@ Update the first row:

(u12 w3 )+ (/11)_1( a;z a1z )

o Update the lower-right submatrix;
dpp a3 ax a3 b1
a A — - Uiz U13
< a3 as3 > ( azxy  as3 > < l31 ) ( )

The total cost is ~ %n3.
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LU Factorization: the algorithm

e Factor the diagonal (auxiliary constraint: [;; = 1)
Compute ((a11 ) = ( h1 ) (u11)

o Update the first column:

(5 ) (5w

@ Update the first row:
(u12 w3 )+ (/11)_1( a;z a1z )
@ Update the lower-right submatrix;

a a a a /
a2 &3\ (a2 a3 ) _ ([ (w2 ws)
a3 as3 a3 as3 31

@ Apply recursively to lower-right submatrix;

The total cost is ~ %n3.
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function [
(nargin (

L, Ul=lufactl(A)
) = 1) || wusage("[L,U] = lufactl(A)")

m=size (A,1); n=size(A,2);
i ((m==0)||(n==0))

return
end

mn=min(m,n);
for j=1:mn
% A(j.j+1:n) = (1.0)\A(j,j+1:n);
A(j+1m,j) = A(j+L1m, j)/(A(J.])):

A(j+1m, j+1:n) = A(j+1im, j+1:n) — A(j+1im, j)*A(j,j+1:n);

end

if (nargout() < 1)

ans = A
elseif (nargout() = 1)
L=A;

elseif (nargout() > 1)
L=tril (A,—1)+eye(mn);
U=triu (A);

end

end
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LU Factorization: Pivoting

However we have always assumed we can divide by uj;; what if we find a
zero value?
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LU Factorization: Pivoting

However we have always assumed we can divide by uj;; what if we find a
zero value?
When an element on the diagonal is zero, search for a
nonzero in its column, and swap the relevant rows

This is equivalent to applying P

= (83)(25)-(3 %)
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LU Factorization: Pivoting

However we have always assumed we can divide by uj;; what if we find a
zero value?

When an element on the diagonal is zero, search for a
nonzero in its column, and swap the relevant rows

This is equivalent to applying P
01 0 15 2 0
PA_(I 0>(2 0 )_<0 1.5)
Thus we are computing PA = LU to get at the solution

Ax=b= PAx=Pb= LUx=Pb=x=U"1L"1Pp

Extension: what is zero? Always search for the coefficient with largest
absolute value!
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LU Factorization: Pivoting

function [L, U, P]=lupfactl(A)
(nargin() ==1) || usage("[L,U,P] = lupfactl(A)");
m=size(A,1); n=size(A,2);
it ((m==0)|(n==0))
return
end

mn=min(m,n); Ip=eye(m);
for j=1:mn
[mx,ix] = max(abs(A(j:m,j))); ix=ix+j—1;

tmp(1l:n) = A(j,1:n); A(j.,1:n) = A(ix,1:n); A(ix ,1:n) = tmp(l:n);
tmp(1:m) = Ip(j.,1:m); Ip(j,1:m) = Ip(ix,1l:m); Ip(ix,1:m) = tmp(l:m);
% A(j,j+1:n) = (1.O\NA(),j+1:n);
AGETm ) = AG +1m, §)/(AG 1))
A(j+1m,j+1:n) = A(j+Lm, j+1:n) — A(j+1:m,j)*A(j,j+1:n);
end
if (nargout() < 1)
ans = A
elseif (nargout() =— 1)
L =A;
elseif (nargout() >= 2)
L=tril (A,—1); L(1:mn,1:mn)=L(1:mn,1:mn)4eye(mn); U=triu (A);
if (nargout()>2)
P=Ip;
end
end

end
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LU Factorization: Pivoting

Whenever you apply the division operator
x=A\b;

this is what Octave/Matlab does internally:
[L,U,P] = lu(A);

z=Pxb;

y=L\z;

x=U\y;

The most expensive part is the invocation of the 1u function (2/3n%).

(salvatore.filippone@uniroma2.it) Linear Algebra 2014-2015 17 / 24



LU Factorization: Pivoting

If you are solving multiple linear systems with the same matrix, it is more
efficient to do:

[L,U,P] = lTu(A);
for j=1:k
b = rhs(j); % Create the next RHS
z=Pxb;
y=L\z;
x=U\y;
% do something with x
end
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LU Factorization

What about inv(A)? Actually this is computed with
Al=UTlLtP

No wonder it costs more: it starts with LU factorization, then goes on
with more computations!

Never explicitly form inv (A)*B, always use A\B.

Cases where you really need the inverse exist but are (vanishingly) rare.
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Matrix division (reloaded)

So far we have only ever handled cases where A is square: since you have
to solve a linear system, trying the \ operator with a rectangular matrix
will throw an error. Right?
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Matrix division (reloaded)

So far we have only ever handled cases where A is square: since you have
to solve a linear system, trying the \ operator with a rectangular matrix

will throw an error. Right? Well, let's try:

octave:20> a=[1,2;3,4;5,6;]

a —=

1 2
3 4
5 6

octave:21> b=[3,4,5]";
octave:22> x=a\b

(salvatore.filippone@uniroma2.it) Linear Algebra

2014-2015



Matrix division (reloaded)

So far we have only ever handled cases where A is square: since you have
to solve a linear system, trying the \ operator with a rectangular matrix
will throw an error. Right? Well, let's try:

octave:20> a=[1,2;3,4;5,6;]

a =
1 2
3 4
5 6

octave:21> b=[3,4,5]";
octave:22> x=a\b

X =
—2.0000
2.5000

What's going on here?
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Matrix division (reloaded)

Go back to the beginning and say it again:

Applying the matrix division operator x=A\b is equivalent to
solving the linear system Ax = b
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Matrix division (reloaded)

Go back to the beginning and say it again:

Applying the matrix division operator x=A\b is equivalent to
solving the linear system Ax = b

So, to define division for a rectangular matrix we need to know what to do

with a linear system:
Ax=b

when Ais m x n and m # n (i.e.: rectangular).
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Matrix division (reloaded)

Linear algebra comes to the rescue:

When A is not square, we can minimize the mismatch
between RHS and LHS, i.e. we search for a least-squares solution

Ax = b = min ||Ax — b||2

When A is square and non-singular this reduces to a “normal” system
solution.

The least squares solution is computed through the QR factorization
A=QR

where Q is orthogonal (i.e. QRT =Q7Q = I) and R is upper triangular
(trapezoidal).

[Q.Rl=qr(A);
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Matrix division (reloaded)

Here are the full rules for
X =A\ B;

When A is a scalar, this is simply a term-by-term division;
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Matrix division (reloaded)

Here are the full rules for

X = A\ B;

When A is a scalar, this is simply a term-by-term division; otherwise:

@ The matrices A and B must have the same number of rows;

The number of rows of X equals the number of columns of A;

°
@ The number of columns of X equals the number of columns of B;
°

The solution always exists in the least squares sense, not necessarily

in the usual matrix inversion sense; moreover, it is not necessarily

unique;
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Matrix division (reloaded)

Here are the full rules for
X =A\ B;

When A is a scalar, this is simply a term-by-term division; otherwise:
@ The matrices A and B must have the same number of rows;
@ The number of rows of X equals the number of columns of A;
@ The number of columns of X equals the number of columns of B;
°

The solution always exists in the least squares sense, not necessarily
in the usual matrix inversion sense; moreover, it is not necessarily
unique;

The right division X=B/A is equivalent to
X = (A"\B")";

from which we can derive the row/columns constraints.
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An example: curve fitting

Suppose you are measuring a physical phenomenon: you get a set of points
(xi, yi) and you make a guess: they lie on a parabola. You should have

yi = ax? + bx; + c, i=1,...n

for some (unknown) coefficients a, b, c. However measurements have
noise, so the equations will not be satisfied exactly. What do you do?
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An example: curve fitting

Suppose you are measuring a physical phenomenon: you get a set of points
(xi, yi) and you make a guess: they lie on a parabola. You should have

yi = ax? + bx; + c, i=1,...n

for some (unknown) coefficients a, b, c. However measurements have
noise, so the equations will not be satisfied exactly. What do you do?

C = XX\Y
where
X12 xp 1
x3 x3 1
XX =
x2 x, 1

The coefficients will give the best fit parabola. BTW: use the
Vandermonde matrix function

XX = vander(x,3)
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