
Computing Fundamentals
Computational Complexity

Salvatore Filippone

salvatore.filippone@uniroma2.it

2014–2015

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 1 / 40



Computational Complexity

An obvious question in computer science is the following:

How much does it cost to solve a given problem?

This is the topic of computational complexity, and it translates into two
main questions:

1 How long will a program run (until completion)?

2 How much memory will a program need to be able to run?

Accordingly we talk of time and space complexity.
Tipically, we consider various instances of a class of problems, each
instance having a size; as an example, consider computing

z = [ 1 , 2 , 3 ] + [ 4 , 5 , 6 ] ;

which is a specific instance of the problem of summing two vectors of size
3, which in turn is a special case of the general problem of computing the
sum of two vectors of arbitrary size.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 2 / 40



Computational Complexity

To compute how long a program will run we need to

Figure out all the operations that will be executed by the
program given a problem instance, and how long each of them
will take

In practice, when doing estimates, we often:

Select and count only a subset of operations (that we consider
relevant);

Assume all such operations take the same amount of time;

These assumptions are only a first-order (sometimes rather crude)
approximation, but they are sufficient for the purposes of this course.
They also imply we are only examining the algorithm (i.e. the logical
sequence of operations), while ignoring such details as the particular
processor, interpreter, program etc.
In many cases we will count arithmetic operations on floating-point data
(unless noted otherwise).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 3 / 40



Computational Complexity

We will use an asymptotic notation:

Given an algorithm to solve a problem we will define its
running time T (n) to be O(f (n)) if there are constants c and n0

such that
T (n) ≤ c · f (n), for all n ≥ n0

and the bound is valid for all problem instances of size n

Note that the actual running time of an algorithm is not necessarily the
same for all instances of size n: we have implicitly defined above the worst
case complexity by asking the upper bound to be valid for all instances.
We may also define an average case complexity over all instances with the
same size n.
As an example: summing two n-vectors always takes n arithmetic
operations, but sorting an n-vector depends on the contents.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 4 / 40



Computational Complexity

Special cases:

O(1): an algorithm taking constant time, independently of size;

O(log(n)): a logarithmic algorithm;

O(n): a linear algorithm;

O(nk): a polynomial algorithm;

O(an): an exponential algorithm.

Polynomial algorithms are considered tractable.
By and large, we should prefer algorithms with a better (i.e. lower)
asymptotic bound: An O(n2) algorithm will eventually overtake an O(n3)
algorithm, even if the leading coefficient is larger.
Note: we are always looking for tight bounds.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 5 / 40



Computational Complexity

n O(n) O(n log(n)) O(n2) O(n3) O(2n)
1 1.0000e+00 0.0000e+00 1.0000e+00 1.0000e+00 2.0000e+00
2 2.0000e+00 4.0000e+00 4.0000e+00 8.0000e+00 4.0000e+00
4 4.0000e+00 1.6000e+01 1.6000e+01 6.4000e+01 1.6000e+01
8 8.0000e+00 4.8000e+01 6.4000e+01 5.1200e+02 2.5600e+02

16 1.6000e+01 1.2800e+02 2.5600e+02 4.0960e+03 6.5536e+04
32 3.2000e+01 3.2000e+02 1.0240e+03 3.2768e+04 4.2950e+09
64 6.4000e+01 7.6800e+02 4.0960e+03 2.6214e+05 1.8447e+19

128 1.2800e+02 1.7920e+03 1.6384e+04 2.0972e+06 3.4028e+38
256 2.5600e+02 4.0960e+03 6.5536e+04 1.6777e+07 1.1579e+77
512 5.1200e+02 9.2160e+03 2.6214e+05 1.3422e+08 1.3408e+154

1024 1.0240e+03 2.0480e+04 1.0486e+06 1.0737e+09 Inf
2048 2.0480e+03 4.5056e+04 4.1943e+06 8.5899e+09 Inf
4096 4.0960e+03 9.8304e+04 1.6777e+07 6.8719e+10 Inf
8192 8.1920e+03 2.1299e+05 6.7109e+07 5.4976e+11 Inf

16384 1.6384e+04 4.5875e+05 2.6844e+08 4.3980e+12 Inf
32768 3.2768e+04 9.8304e+05 1.0737e+09 3.5184e+13 Inf
65536 6.5536e+04 2.0972e+06 4.2950e+09 2.8147e+14 Inf

131072 1.3107e+05 4.4564e+06 1.7180e+10 2.2518e+15 Inf
262144 2.6214e+05 9.4372e+06 6.8719e+10 1.8014e+16 Inf
524288 5.2429e+05 1.9923e+07 2.7488e+11 1.4412e+17 Inf

1048576 1.0486e+06 4.1943e+07 1.0995e+12 1.1529e+18 Inf

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 6 / 40



Computational Complexity

An example: the Discrete Fourier Transform (DFT)

F (j) =
N−1∑
k=0

f (k)e−
kj
N
2πi , j = 0, . . . ,N − 1.

As defined it costs O(N2); in 1965 Cooley and Tukey discovered an
O(N log(N)) algorithm called the Fast Fourier Transform (FFT).
Things that would NOT exist without the FFT:

CD;

JPEG;

DVD;

Digital TV;

Cell phones;

Digital controls (ABS, ESP, Common-rail injection);

. . .

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 7 / 40



Computational Complexity

A few caveats:

If we are handling small problem instances, maybe the O(n3)
algorithm is better: 5n3 < 100n2 for all n less than 20; some
“optimal” algorithms are good only on astronomically large inputs,
and are thus useless in practice;

If a program is only going to be used once or twice, the time to write
it becomes important: if the slow algorithm is easier to code, it may
be better;

In some cases the fastest algorithm takes too much space;

In some cases an algorithm may be the best in the average case and
at the same time very bad in the worst case (e.g. quicksort).

And finally: Never try to improve a program without actually knowing
(and measuring) its performance

Premature optimization is the root of all evil D. Knuth

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 8 / 40



Computational Complexity

How to compute an instruction count:

Simple scalar statements have a simple O(1) cost;

The cost of a sequence is the sum of the individual costs;

The cost of a loop is the sum over all iterations of the cost of each
iteration, possibly including the cost to test for termination;

Array statements have a cost that can be understood by expanding
them into equivalent loops;

A conditional statement has a worst-case cost that is the largest of
the if and else parts; to get the average cost we need to multiply
the two branches by the probability that each is taken; all this plus
the cost of the branching condition.

These simple rules can get us very far, but the devil (as usual) is in the
details.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 9 / 40



Computational Complexity

Statements involving scalar quantities.

a = 2 . 5 ; % 0 or 1 : Cost o f a s s i gnment i s o f t e n i g no r e d ;

b = a∗a+1; % Here we have 2 f l o a t i n g po i n t o p e r a t i o n s ;
c = b ˆ3 ; % bˆ3 i s b∗b∗b , so aga in 2 o p e r a t i o n s ;

f o r k=n1 : n2 % This i s e xecu t ed ( n2−n1+1) t imes
c=a+b % Cost he r e i s 1 i ndependen t o f K

end % t o t a l c o s t : 1∗( n2−n1+1)

i f (mod( k , 2 ) == 0) % I f K i s a random i n t e g e r 50% prob .
c=a∗b+c ; % wors t ca se i s IF branch o f c o s t 2

e l s e % ave rage ca se c o s t s 1 . 5
b=b+1; % p l u s 2 f o r e v a l u a t i n g (MOD()==0)

end

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 10 / 40



Computational Complexity

Loops: to figure out cost must compute∑
i∈I

C (i)

i is an iteration;

I is the set of all iterations;

C (i) is the cost of the i-th iteration.

Often (but not always) the cost per iteration is constant; determining I is
easy for for loops, may be nontrivial for while loops. To nested loops
there correspond multiple sums:

f o r i =1:n
f o r j =1:k
<s tatement>
end

end

Opcnt =
n∑

i=1

k∑
j=1

C (statementij).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 11 / 40



Computational Complexity

Vector (scaled) sums of size n: c = a + alpha*b;

f o r i =1:n
c ( i ) = a ( i ) + a l p h a ∗b ( i ) ;

end

Cost:
n∑

i=1

2 = 2
n∑

i=1

1 = 2n

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 12 / 40



Computational Complexity

Scalar product size n: c = x*y;

c = 0
f o r i =1:n

c = c+x ( i )∗ y ( i ) ;
end

Cost:
n∑

i=1

2 = 2
n∑

i=1

1 = 2n

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 13 / 40



Computational Complexity

Matrix-vector products (matrix m × n): y = y + A*x;

f o r i =1:m
f o r j =1:n

y ( i ) = y ( i ) + A( i , j )∗ x ( j ) ;
end

end

Cost:
m∑
i=1

n∑
j=1

2 =
m∑
i=1

2
n∑

j=1

1 =
m∑
i=1

2n = 2n
m∑
i=1

1 = 2mn

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 14 / 40



Computational Complexity

Matrix-matrix products (matrix m × k × n): C = C + A*B;

f o r i =1:m
f o r j =1:n

f o r p=1:k
C( i , j ) = C( i , j ) + A( i , p )∗B( p , j ) ;

end
end

end

Cost:
m∑
i=1

n∑
j=1

k∑
p=1

2 = 2mnk

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 15 / 40



Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:

1 n=s i z e ( L , 1 ) ;
2 f o r i =1:n
3 x ( i ) = b ( i ) − L ( i , 1 : i −1)∗x ( 1 : i −1);
4 x ( i ) = x ( i ) / L ( i , i ) ;
5 end

If the diagonal is unitary, the division steps can be skipped. The total
number of operations executed is ≈ n2.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 16 / 40



Triangular linear systems

If a coefficient matrix is lower triangular it is easy to solve Lx = b by
forward substitution:

1 n=s i z e ( L , 1 ) ;
2 f o r i =1:n
3 x ( i ) = b ( i ) − L ( i , 1 : i −1)∗x ( 1 : i −1);
4 x ( i ) = x ( i ) / L ( i , i ) ;
5 end

If the diagonal is unitary, the division steps can be skipped. The total
number of operations executed is ≈ n2.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 16 / 40



Triangular linear systems

What is the operation count?

At each loop iteration i = 1 . . . n, we have a dot product of size i − 1
at step 3, plus one scalar add

A dot product of size k costs 2k operations;

At each loop iteration we have a division;

Note that each iteration has a different cost! Therefore:

opcnt =
n∑

i=1

1 +
n∑

i=1

(2(i − 1) + 1) = (
n∑

i=1

2) + 2(
n∑

i=1

(i − 1))

= 2n + 2
n−1∑
i=0

i = 2n + 2
(n − 1)n

2
= n2 + n

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 17 / 40



Computational Complexity

Useful tricks:

n∑
i=0

i =
n(n + 1)

2
≈ n2

2
= O(n2)

n∑
i=0

i2 =
n(n + 1)(2n + 1)

6
≈ n3

3
= O(n3)

Note that the leading term can be found with an integral

n∑
i=0

i2 ≈ n3

3
=

∫ n

0
x2dx

n2∑
i=n1

1 = n2 − n1 + 1

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 18 / 40



Searching & Sorting

Searching and Sorting are essential problems in computer science.

We have a collection of items (records) Ri each one with a
key Ki , i = 1, . . . , n, and we are given a key K : we need to find
the index j of a record (if any) with Kj = K .

This formulation of the problem lends immediately to the sequential search
algorithm where we only need to check for equality Kj = K :

f u n c t i o n r e s=s ea r ch ( key , v )
% Sequ e n t i a l s e a r c h
k=1;
found=f a l s e ;
r e s=−1;
n=l eng th ( v ) ;
wh i l e ( ( k<=n)&&(˜ found ) )

i f ( v ( k)==key )
found = t r u e ;
r e s=k ;

end
k=k+1;

end

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 19 / 40



Searching & Sorting

What is the runtime of sequential search? We must count the number of
iterations through the loop.

If the search is successful, we have performed exactly res iterations
through the loop; if we don’t know any better, we may assume a
uniform distribution, which means on average res = n/2;

If the search is unsuccessful, we have performed n iterations.

So, this algorithm is O(n).
Can we do any better?

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 20 / 40



Searching & Sorting

Suppose that the keys K admit an order relation:

1 Each pair of keys satisfies Ki ,Kj satisfies exactly one of three
relations (trichotomy): Ki < Kj or Ki = Kj or Kj < Ki ;

2 If Ki < Kq and Kq < Kj then Ki < Kj (transitivity).

Now we can ask: what happens if you happen to have a sorted set of
records:

i < j ⇒ Ki < Kj

So:

Compare the search key K with the item in the middle: if the
key is smaller, then an equal item can only be in the first
half-vector, if it’s larger it can only be in the second half-vector.
An if it’s equal you’re done.

(by application of transitivity).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 21 / 40



Searching & Sorting

f u n c t i o n r e s=bsea r ch ( k , v )
% Bina ry s e a r c h
found=f a l s e ;
r e s=−1;
n=l eng th ( v ) ;
f i r s t =1; l a s t=n
wh i l e ( ( f i r s t <=l a s t )&&(˜ found ) )

m = f l o o r ( ( f i r s t+l a s t )/2)
i f ( v (m)==key )

found = t r u e ;
r e s = m

e l s e i f ( key < v (m) )
l a s t = m−1

e l s e i f ( key > v (m) )
f i r s t = m+1

end
end

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 22 / 40



Searching & Sorting

What is runtime of binary search?

At each step we are searching a subvector v(first:last), of size
last − first + 1;

In the worst case, we stop when first > last, i.e. empty vector;

As we move from a step to the next, the length of the vector halves,

n→ n

2
→ n

22
. . .

In other words: we are searching for the smallest i such that

n

2i
≤ 1,

or
i ≥ log2(n).

Hence binary search is O(log(n)). (But beware of argument copy!).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 23 / 40



Searching & Sorting

We see it’s beneficial to have items sorted. How do we do it? First idea:
insertion sorting. Take one item of the input at a time and put it in the
right place in the output.

f u n c t i o n vs=i n s e r t ( v )

i f ( ˜ ( ( s i z e ( v , 1 )==1) | | ( s i z e ( v ,2)==1)))
e r r o r (”V i s not a v e c t o r ” ) ;

end
t r a n s=( s i z e ( v , 2 )˜=1) ;
i f ( t r a n s )

v=v ’ ;
end
vs = [ ] ;
f o r x=v

i=l s r c h ( x , vs ) ;
v s=[ vs ( 1 : i ) , x , v s ( i +1: l eng th ( vs ) ) ] ;

end
i f ( t r a n s )

vs = vs ’ ;
end

Hopelessly O(n2).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 24 / 40



Searching & Sorting

We see it’s beneficial to have items sorted. How do we do it? First idea:
insertion sorting. Take one item of the input at a time and put it in the
right place in the output.

f u n c t i o n vs=i n s e r t ( v )

i f ( ˜ ( ( s i z e ( v , 1 )==1) | | ( s i z e ( v ,2)==1)))
e r r o r (”V i s not a v e c t o r ” ) ;

end
t r a n s=( s i z e ( v , 2 )˜=1) ;
i f ( t r a n s )

v=v ’ ;
end
vs = [ ] ;
f o r x=v

i=l s r c h ( x , vs ) ;
v s=[ vs ( 1 : i ) , x , v s ( i +1: l eng th ( vs ) ) ] ;

end
i f ( t r a n s )

vs = vs ’ ;
end

Hopelessly O(n2).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 24 / 40



Searching & Sorting

We see it’s beneficial to have items sorted. How do we do it? First idea:
insertion sorting.
f u n c t i o n vs=i n s e r t 1 ( v )

i f ( ˜ ( ( s i z e ( v , 1 )==1) | | ( s i z e ( v ,2)==1)))
e r r o r (”V i s not a v e c t o r ” ) ;

end

n=l eng th ( v ) ;
f o r j =2:n

i=j −1;
xch=t r u e ;
wh i l e ( ( i >= 1) && ( xch ) )

xch= ( v ( i ) > v ( i +1))
i f ( xch )

t=v ( i ) ;
v ( i )=v ( i +1);
v ( i +1)=t ;

end
i=i −1;

end
end
vs=v ;

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 25 / 40



Searching & Sorting

Second strategy: merge sort.
Suppose you have two sorted sequences; then it is easy to see that a very
simple pass looking at the first elements at each step will be enough to
build a single sorted sequence containing all their elements. This is called
merge
Then we have the mergesort algorithm:

If the vector is of length 1 it’s already sorted;

Otherwise, call recursively on the first half, then on the second half,
then merge the two sorted subvectors.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 26 / 40



Searching & Sorting

Main program

f u n c t i o n b = merge so r t ( a )
% L i s t i n g 16−5 Merge s o r t
% This f u n c t i o n s o r t s a column ar ray ,

i f ( ˜ ( ( s i z e ( a , 1 )==1) | | ( s i z e ( a ,2)==1)))
e r r o r (” a i s not a v e c t o r ” ) ;

end
b=a ;
s z = l eng th ( b ) ;
i f s z > 1

szb2 = f l o o r ( s z / 2 ) ;
f i r s t = merge so r t ( b (1 : szb2 ) ) ;
second = merge so r t ( b ( szb2+1 : s z ) ) ;
b = merge ( f i r s t , second ) ;

end
i f ( ( s i z e ( a ,2)==1)&&( s i z e (b ,2)>1))

b=b ’ ;
end

end

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 27 / 40



Searching & Sorting

Second strategy: merge sort.
f u n c t i o n b = merge ( f i r s t , second )
% Merges two s o r t e d a r r a y s
i 1 = 1 ; i 2 = 1 ; out = 1 ;
b= f i r s t ;

% as long as n e i t h e r i 1 nor i 2 pa s t the end ,
% move the sma l l e r e l ement i n t o a

wh i l e ( i 1 <= l eng th ( f i r s t ) ) && ( i 2 <= l eng th ( second ) )
i f l t ( f i r s t ( i 1 ) , second ( i 2 ) )

b ( out ) = f i r s t ( i 1 ) ; i 1 = i 1 + 1 ;
e l s e

b ( out ) = second ( i 2 ) ; i 2 = i 2 + 1 ;
end
out = out + 1 ;

end
% copy any r ema in i ng e n t r i e s o f the f i r s t a r r a y

wh i l e i 1 <= l eng th ( f i r s t )
b ( out ) = f i r s t ( i 1 ) ; i 1 = i 1 + 1 ; out = out + 1 ;

end
% copy any r ema in i ng e n t r i e s o f the second a r r a y

wh i l e i 2 <= l eng th ( second )
b ( out ) = second ( i 2 ) ; i 2 = i 2 + 1 ; out = out + 1 ;

end
end
(salvatore.filippone@uniroma2.it) Complexity 2014–2015 28 / 40



Searching & Sorting

Third strategy: quicksort
If all the items in the first half are less than all the items in the second half,
then you can sort recursively the two halves and the result will be sorted.
Then we have the quicksort algorithm:

If the vector is of length 1 it’s already sorted;

Otherwise, partition the vector into two halves such that all items in
the first half are less than those in the second, then call recursively on
both halves.

This is also called partition-exchange sorting.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 29 / 40



Searching & Sorting

Third strategy: quicksort

% L i s t i n g 16−3 − Quick s o r t
f u n c t i o n a = qu i c k s o r t ( a )
% This f u n c t i o n s o r t s a column ar ray ,
% u s i n g the qu i ck s o r t a l g o r i t hm

i f ( ˜ ( ( s i z e ( a , 1 )==1) | | ( s i z e ( a ,2)==1)))
e r r o r (” a i s not a v e c t o r ” ) ;

end
a=q u i c k s o r t i ( a , 1 , l eng th ( a ) ) ;

end

f un c t i o n a = q u i c k s o r t i ( a , from , to )
i f ( from < to )

[ a p ] = p a r t i t i o n ( a , from , to ) ;
% from , p
% p+1, to

a = q u i c k s o r t i ( a , from , p ) ;
a = q u i c k s o r t i ( a , p + 1 , to ) ;

end
end

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 30 / 40



Searching & Sorting

Third strategy: quicksort

f u n c t i o n [ a l ower ] = p a r t i t i o n ( a , from , to )
% This f u n c t i o n p a r t i t i o n s a column a r r a y

p i v o t = a ( from ) ; i = from − 1 ; j = to + 1 ;
wh i l e ( i < j )

i = i + 1 ;
wh i l e l t ( a ( i ) , p i v o t )

i = i + 1 ;
end
j = j − 1 ;
wh i l e gt ( a ( j ) , p i v o t )

j = j − 1 ;
end
i f ( i < j )

temp = a ( i ) ; % swap
a ( i ) = a ( j ) ; % a ( i ) w i th a ( j )
a ( j ) = temp ;

end
end
lower = j ;

end

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 31 / 40



Computational Complexity

How do we count operations for recursive functions?
Let’s model the behaviour:

Each instance of a recursive function is either a base
instance, with a known cost, or it splits the problem of size n
into (a) subproblems of size (n/b) whose solutions will be
combined to build the overall solution

In formulae:

T (n) =

{
1 n = 1
aT (nb ) + nα n > 1

The term nα is assumed to measure the cost of splitting the problem and
of combining the solutions of the subproblems.
Note: if we have c · nα we can easily define an auxiliary function U = T/c.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 32 / 40



Computational Complexity

How do we count operations for recursive functions?
Let’s model the behaviour:

Each instance of a recursive function is either a base
instance, with a known cost, or it splits the problem of size n
into (a) subproblems of size (n/b) whose solutions will be
combined to build the overall solution

In formulae:

T (n) =

{
1 n = 1
aT (nb ) + nα n > 1

The term nα is assumed to measure the cost of splitting the problem and
of combining the solutions of the subproblems.
Note: if we have c · nα we can easily define an auxiliary function U = T/c.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 32 / 40



Computational Complexity

Unroll the recurrence for n = bk :

T (n) = aT
(n

b

)
+ nα

= a
(

aT
( n

b2

)
+
(n

b

)α)
+ nα = a2T

( n

b2

)
+ a

(n

b

)α
+ nα

= a3T
( n

b3

)
+ a2

( n

b2

)α
+ a

(n

b

)α
+ nα

= akT
( n

bk

)
+

k−1∑
j=0

aj
( n

bj

)α
=

k∑
j=0

aj
( n

bj

)α
= nα

k∑
j=0

( a

bα

)j
having used:

T
( n

bk

)
= T (1) = 1 = 1α =

( n

bk

)α
(salvatore.filippone@uniroma2.it) Complexity 2014–2015 33 / 40



Computational Complexity

Case 1:
a > bα;

in this case
k∑

j=0

( a

bα

)j
=

(
a
bα

)k+1 − 1
a
bα − 1

;

asymptotically this can be approximated by

k∑
j=0

( a

bα

)j
≤ c ·

( a

bα

)k+1
=

ac

bα
ak

nα

which gives

T (n) ≤ nα · ac

bα
ak

nα
= β · ak

hence
T (n) = O(ak) = O(alogb n) = O(nlogb a)

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 34 / 40



Computational Complexity

Case 2:
a < bα;

in this case
k∑

j=0

( a

bα

)j
≤
∞∑
j=0

( a

bα

)j
= c <∞,

hence
T (n) ≤ nα · c = O(nα).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 35 / 40



Computational Complexity

Case 3:
a = bα;

in this case we have
k∑

j=0

1 = k + 1 = O(k)

hence
T (n) = O(nαk) = O(nα logb n).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 36 / 40



Computational Complexity

Example: merge-sort and quicksort. Both algorithms can be modeled by

T (n) =

{
1 n = 1
2T (n2 ) + n n > 1

Hence behaviour is
T (n) = O(n log(n)).

Note: it is essential to split into equal halves; this is guaranteed for
merge-sort, but only statistically true for quicksort. So: the average
behaviour of quicksort is better, but the worst case behaviour is bad,
whereas mergesort is always good.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 37 / 40



Computational Complexity

Example: Matrix multiplication.
We know that C = AB takes 2n3 operations, right?

Well, consider the problem of multiplying two 2× 2 matrices(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
The standard way to compute the product:

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

8 multiplications and 4 additions.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 38 / 40



Computational Complexity

Example: Matrix multiplication.
We know that C = AB takes 2n3 operations, right?
Well, consider the problem of multiplying two 2× 2 matrices(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
The standard way to compute the product:

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

8 multiplications and 4 additions.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 38 / 40



Computational Complexity

Strassen (1968) discovered a formula later improved by Winograd

u = (A21 − A11)(B21 − B22)

v = (A21 + A22)(B21 − B11)

w = A11B11 + (A21 + A22 − A11)(B11 + B22 − B12)

C11 = A11B11 + A12B21

C12 = w + v + (A11 + A12 − A21 − A22)B22

C21 = w + v + A22(B21 + B12 − B11 − B22)

C22 = u + v + w

These are 7 multiplications and 15 additions; commutativity is not used,
so the terms can be submatrices.

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 39 / 40



Computational Complexity

Hence matrix multiplication costs

T (n) =

{
1 n = 1
7T (n2 ) + 15 ∗ n2 n > 1

but
7 > 4 = 22

hence
T (n) = O(nlog2(7)) = O(n2.8074)

Current record is O(n2.376).

(salvatore.filippone@uniroma2.it) Complexity 2014–2015 40 / 40


